

DESIGN CRITERIA

1. THE BUILDING(S) HAS BEEN DESIGNED IN ACCORDANCE WITH THE FOLLOWING CODES AND STANDARDS.

- A. UFC 1-200-01, DOD BUILDING CODE (01 SEPT 2022, CHANGE 2, 12 JUNE 2023)
- B. UFC 3-301-01, STRUCTURAL ENGINEERING (11 APR 2023, CHANGE 1, 2 OCT 2023)
- C. IBC 2021, INTERNATIONAL BUILDING CODE
- D. ASCE 7-16, MINIMUM DESIGN STANDARDS FOR BUILDINGS AND STRUCTURES
- E. UFC 3-301-01, DOD MINIMUM ANTI-TERRORISM STANDARDS FOR BUILDINGS (12 DECEMBER 2018 WITH CHANGE 2, 30 JUL 2022)

2. LOADING CRITERIA:

MINIMUM SUPERIMPOSED DEAD LOADS :

SEE SHEET S0010

MINIMUM LIVE LOADS:

SEE SHEET S0010

SNOW LOADS:

GROUND SNOW LOAD:	$P_s = 25 \text{ PSF}$	→ UFC 3-301-01
FLAT-ROOF SNOW LOAD:	$P_s = 19.25 \text{ PSF}$	
MINIMUM SNOW LOAD:	$P_s = 22.0 \text{ PSF}$	
SNOW EXPOSURE FACTOR, C_s :	$C_s = 1.0$	PARTIALLY EXPOSED
SNOW LOAD IMPORTANCE FACTOR, I_s :	$I_s = 1.10$	FOR RISK CATEGORY "III"
TOPOGRAPHIC FACTOR, K_t :		
SLOPE FACTOR, C_s :	$C_s = 1.00$	
SLOPED ROOF SNOW LOAD:	19.25 PSF	
RAIN-ON-SNOW SURCHARGE LOAD:	NOT APPLICABLE	
FROST PENETRATION DEPTH:	26 IN	
UNBALANCED SNOW:	$P_s = \text{SEE SHEET S0010}$	

RAIN LOADS:

100-YEAR HOURLY RAINFALL RATE = 3.47 INCHES

WIND LOADS:

ALL BUILDINGS: PER UFC 3-301-01, IBC 2021 & ASCE 7-16

BASIC 3-SECOND GUST DESIGN WIND SPEED = 120 M.P.H. (ULTIMATE)

RISK CATEGORY = "III"

WIND EXPOSURE CATEGORY FOR MWFRS	= 'C'
TOPOGRAPHIC FACTOR, K_t	= 1.15
INTERNAL PRESSURE COEFFICIENT, G_{p1}	= (+/-)0.18
COMPONENT AND CLADDING	= PER IBC 2021 ASCE 7-16

WIND x	= 84k
WIND y	= 97k

SEISMIC LOADS:

ALL BUILDINGS: PER UFC 3-301-01, IBC 2021 & ASCE 7-16

RISK CATEGORY = "III"

SEISMIC IMPORTANCE FACTOR, I_s = 1.25

SPECTRAL RESPONSE ACCELERATIONS (UFC 3-301-01 & IBC 2021 SECTION 1613.2.1)

AT SHORT PERIODS, S_1 ; F_0	= 1.30; 1.60
AT ONE SECOND PERIOD, S_1 ; F_0	= 0.043; 2.40

SITE CLASS = "D"

DESIGN SPECTRAL RESPONSE ACCELERATIONS

AT SHORT PERIODS, S_{01}	= 0.139
AT ONE SECOND PERIOD, S_{01}	= 0.068

SEISMIC DESIGN CATEGORY = "B" (IBC 2021 TABLE 1613.2.3)

BASIC SEISMIC FORCE-RESISTING SYSTEM (UFC 3-301-01 TABLE 3-3)

BEARING WALL SYSTEMS: INTERMEDIATE REINFORCED MASONRY SHEAR WALLS

RESPONSE MODIFICATION FACTOR, R = 3 1/2DEFLECTION AMPLIFICATION FACTOR, C_d = 2 1/4

OVERSTRENGTH FACTOR = 2 1/2

SEISMIC RESPONSE COEFFICIENT, C_s = 0.05

DESIGN BASE SHEAR = 93 K

ANALYSIS PROCEDURE USED EQUIVALENT LATERAL FORCE.

ANTI-TERRORISM FORCE PROTECTION CRITERIA:

BUILDING CATEGORY: INHABITED BUILDING
DESIGN CRITERIA: MINIMUM AT/FP REQUIREMENTS PER UFC 4-010-01STANDARD 1: STANDOFF DISTANCE
- BUILDING MORE THAN 10' FROM INSTALLATION PERIMETER.

STANDARD 2: UNSTRUCTURED SPACE

- 32FT UNSTRUCTURED SPACE. SEE CIVIL DRAWINGS.

STANDARD 6: PROGRESSIVE COLLAPSE RESISTANCE

- DOES NOT APPLY.

STANDARD 7: STRUCTURAL ISOLATION

- DOES NOT APPLY.

STANDARD 8: HANGING OVERHANGS AND BREEZEWAYS

- DOES NOT APPLY.

STANDARD 9: EXTERIOR MASONRY WALLS

- DOES NOT APPLY.

STANDARD 15: OVERHEAD MOUNTED ARCHITECTURAL FEATURES
- ENSURE OVERHEAD MOUNTED FEATURES WEIGHING 31 POUNDS OR MORE (EXCLUDING DISTRIBUTION SYSTEMS SUCH AS SUSPENDED CEILINGS THAT COLLECTIVELY EXCEED THAT WEIGHT) ARE MOUNTED TO MINIMUM 10' FROM THE EXTERIOR FAÇADE. MOUNT ALL BUILDING OCCUPANTS, MOUNT ALL SUCH SYSTEMS SO THAT THEY RESIST FORCES OF 0.5 TIMES THE COMPONENT WEIGHT IN ANY DIRECTION AND 1.5 TIMES THE COMPONENT WEIGHT IN THE DOWNWARD DIRECTION.

STANDARD 19: EQUIPMENT BRACING

- MOUNT ALL OVERHEAD UTILITIES WEIGHING 30 POUNDS OR MORE (EXCLUDING DISTRIBUTION SYSTEMS SUCH AS PIPING NETWORKS THAT COLLECTIVELY EXCEED THAT WEIGHT) TO THE EXTERIOR FAÇADE. MOUNT THE LUMBER SO THAT IT WILL FALL AND INJURE BUILDING OCCUPANTS. MOUNT ALL SUCH SYSTEMS AS REQUIRED TO RESIST FORCES OF 0.5 TIMES THE COMPONENT WEIGHT IN ANY DIRECTION AND 1.5 TIMES THE COMPONENT WEIGHT IN THE DOWNWARD DIRECTION.

MECHANICAL EQUIPMENT WEIGHTS

MECHANICAL EQUIPMENT WEIGHTS ARE COORDINATED WITH THE MECHANICAL ENGINEER'S BASIS OF DESIGN. SEE DRAWINGS FOR EQUIPMENT WEIGHTS AND LOCATIONS. FOR CASES WHERE PURCHASED EQUIPMENT EXCEEDS THE LISTED ESTIMATED EQUIPMENT WEIGHT BY 5%, BEFORE PROCEEDING WITH WORK, CONTACT THE E.O.R. AND SUBMIT LOAD DATA FOR REVIEW TO DETERMINE IF STRUCTURAL FRAMING ENHANCEMENTS ARE REQUIRED. STRUCTURAL COMPONENTS ARE NOT DESIGNED FOR VIBRATING EQUIPMENT. MOUNT VIBRATING EQUIPMENT ON VIBRATION ISOLATOR.

CONSTRUCTION LOADS

IMPOSED CONSTRUCTION LOADS, INCLUDING CONSTRUCTION CRANES, SCISSOR LIFTS, RIDING LEVELERS ETC., IN EXCESS OF STATED DESIGN LOADS MUST BE REVIEWED BY E.O.R. PRIOR TO APPLICATION OF SUCH LOADS. SUBMIT CALCULATIONS BY OTHERS TO CHECK THE ADEQUACY OF THE BASE STRUCTURE WITH THESE CONSTRUCTION LOADS IMPOSED FOR REVIEW.

SERVICEABILITY CRITERIA - NEW CONSTRUCTION

LIVE LOAD FLOOR VERTICAL DEFLECTION	= L/480 OR LESS
LIVE LOAD ROOF VERTICAL DEFLECTION	= L/240 OR LESS
LONG-TERM TOTAL LOAD VERTICAL DEFLECTION	= L/240 OR LESS
INTER-STORY LATERAL DRIFT DUE TO WIND LOAD	= H/480 OR LESS

DELEGATED DESIGN

EMPLOY OR RETAIN A REGISTERED PROFESSIONAL STRUCTURAL ENGINEER, LICENSED IN ANY STATE IN THE UNITED STATES, TO DESIGN AND DETAIL ITEMS LISTED BELOW THAT ARE PART OF THE BASE BUILDING STRUCTURE:

- STRUCTURAL STEEL CONNECTIONS, NOT DETAILED ON THESE DRAWINGS
- MULLIONS, WINDOWS, DOORS AND THEIR CONNECTIONS TO BASE STRUCTURE
- COLD-FORMED STEEL (CFS) FRAMING SYSTEM, NOT DESIGNED AND DETAILED ON THESE DRAWINGS
- PRECAST SYSTEM OR MASONRY, NOT DESIGNED AND DETAILED ON THESE DRAWINGS
- ARCHITECTURAL FEATURES INCLUDING FAÇADE SYSTEM, NOT DETAILED ON THESE DRAWINGS
- SEISMIC BRACING OF NON-STRUCTURAL ELEMENTS, IF REQUIRED, INCLUDING BUT NOT LIMITED TO MEP EQUIPMENT SUPPORT BRACING, ARCHITECTURAL COMPONENT BRACINGS ETC.

SUBMIT SEALED AND SIGNED CALCULATIONS AND SHOP DRAWINGS CERTIFYING THE DESIGN MEETS THE REQUIREMENTS OF DESIGN CRITERIA LISTED ABOVE.

GENERAL

1. THE DESIGN, ADEQUACY AND SAFETY OF ERECTION BRACING, SHORING, TEMPORARY SUPPORT, ETC. IS THE SOLE RESPONSIBILITY OF THE CONTRACTOR AND HAS NOT BEEN CONSIDERED BY THE ARCHITECT / ENGINEER. THE CONTRACTOR IS RESPONSIBLE FOR THE STABILITY OF THE STRUCTURE PRIOR TO THE APPLICATION OF SHEAR WALLS, ROOF AND FLOOR DIAPHRAGMS AND FINISH MATERIALS. PROVIDE THE NECESSARY BRACING TO PROVIDE STABILITY PRIOR TO THE APPLICATION OF THE AFOREMENTIONED MATERIALS. STRUCTURAL CALCULATIONS AND DETAILS FOR ERECTION, TEMPORARY SHORING AND BRACING MUST BE SEEN BY A REGISTERED PROFESSIONAL STRUCTURAL ENGINEER LOCATED IN THE STATE IN WHICH THE PROJECT IS LOCATED AND MUST BE SUBMITTED TO ARCHITECT / ENGINEER FOR RECORD.

2. SHOP DRAWINGS MUST BE CHECKED BY THE CONTRACTOR BEFORE SUBMITAL TO ARCHITECT / ENGINEER. SHOP DRAWINGS FOR STRUCTURAL STEEL, CONCRETE REINFORCING AND MASONRY REINFORCING MUST BE SUBMITTED FOR CONFORMANCE WITH THE DESIGN CONCEPT PRIOR TO FABRICATION. PROVIDE SHOP DRAWINGS FOR PRE-FABRICATED STRUCTURAL SYSTEMS FOR REVIEW BY E.O.R.

3. CONTRACTOR MUST WORK THIS SET OF DRAWINGS IN CONJUNCTION WITH ARCHITECTURAL, ELECTRICAL, MECHANICAL DRAWINGS FOR SIZE, SHAPE AND LOCATION OF WALL OPENINGS. ANY CONFLICT MUST BE BROUGHT TO THE ATTENTION OF THE ARCHITECT / ENGINEER PRIOR TO FABRICATION OR CONSTRUCTION.

4. DO NOT USE SCALE TO OBTAIN DIMENSIONS NOT SHOWN ON THESE DRAWINGS. DO NOT SCALE/OBTAI ANY UNCLEAR INFORMATION FROM THE E-FILE INCLUDING REVIT MODEL OF CAD DRAWINGS, THE CONTRACTOR SHALL BE RESPONSIBLE FOR ERRORS RESULTING FROM SUCH SCALED DATA.

5. USE OF E-FILE OF CAD S-DRAWINGS AS THE BASE SHEET FOR THE SHOP DRAWINGS PREPARATION REQUIRES REVIEW BY ARCHITECT, FEES FOR A/C OF COSTS OF REPRODUCTION, SHIPPING, AND HANDLING WILL BE APPLIED. THE CONTRACTOR SHALL BE RESPONSIBLE FOR ANY ERRORS RESULTING FROM SUCH USE.

6. VERIFY DIMENSIONS AND CONDITIONS WITH THE LATEST ARCHITECTURAL, MECHANICAL AND SHOP DRAWINGS IN THE FIELD OF EXISTING CONDITIONS BEFORE PROCEEDING WITH FABRICATION OR CONSTRUCTION.

7. SERVICES FOR SOIL, MASONRY, CONCRETE, STEEL, BOLT & WELD TESTING AS OUTLINED IN THE SPECIFICATIONS AND GENERAL NOTES MUST BE PERFORMED BY AN INDEPENDENT TESTING AGENCY PROVIDED BY THE DESIGN BUILD CONTRACTOR. REPORTS MUST BE SUBMITTED TO THE ARCHITECT/ENGINEER. TESTING MUST CONFORM TO THE REQUIREMENTS OF THE INTERNATIONAL BUILDING CODE.

SHEET INDEX

S0001	GENERAL NOTES
S0002	GENERAL NOTES
S0003	GENERAL NOTES
S0004	GENERAL NOTES
S0005	QUALITY ASSURANCE PLAN
S0006	QUALITY ASSURANCE PLAN
S0010	LOADING DIAGRAMS
S0011	COMPONENT & CLADDING WIND DIAGRAM

SB101	OVERALL PLAN - FOUNDATION / LEVEL 01
SB111	FOUNDATION / LEVEL 01 - AREA A
SB112	FOUNDATION / LEVEL 01 - AREA B
SB113	FOUNDATION / LEVEL 01 - AREA C
SB501	SECTIONS & DETAILS
SB502	SECTIONS & DETAILS
SB601	SCHEDULES

SF101	OVERALL PLAN - ROOF FRAMING
SF111	ROOF FRAMING PLAN - AREA A
SF112	ROOF FRAMING PLAN - AREA B
SF113	ROOF FRAMING PLAN AREA C
SF301	WALL ELEVATIONS
SF302	WALL ELEVATIONS
SF303	WALL ELEVATIONS
SF501	SECTIONS & DETAILS
SF502	SECTIONS & DETAILS
SF503	SECTIONS & DETAILS
SF601	SCHEDULES

GENERAL EXCAVATION

1. COORDINATE ELEMENTS OF THE FILL OPERATIONS AND IF REQUIRED, SOIL RETENTION SYSTEM, WITH ELEMENTS OF THE PERMANENT BUILDING.

2. THE EXCAVATIONS FOR FOOTINGS, MATS, PITS, ETC. MUST BE EXCAVATED ON AN INDIVIDUAL, LOCALIZED BASIS. THE LAST 6 INCHES OF EACH EXCAVATION MUST BE EXCAVATED TO A TRIM, LEVEL SURFACE.

3. PROVIDE POSITIVE PROTECTION (MATS/SHEET COVERINGS) FOR EXCAVATION SLOPES TO PROTECT SLOPES FROM INSTABILITY AND DETERIORATION DUE TO RAIN, WIND OR SNOW/ICE.

4. PROVIDE SURFACE DRAINAGE CHANNELS, SUMPS AND SUMP PUMPS TO PROTECT EXCAVATIONS FROM FLOODING. FLOODING OF ANY EXCAVATION AFTER APPROVAL OF THE SUBGRADE WILL BE CAUSE FOR COMPLETE REMOVAL OF CONCRETE MUD SLABS AND COMPLETE REPREPARATION AND APPROVAL OF THE SUBGRADE.

5. THE SITE MUST BE DEWATERED BEFORE OR AS THE EXCAVATION PROCEEDS. AT ALL TIMES THE DEWATERING SYSTEM MUST MAINTAIN THE WATER LEVEL, A MINIMUM OF 3 FEET BELOW THE DEEPEST FOUNDATION SUBGRADE. THE DEWATERING SYSTEM MUST BE MAINTAINED UNTIL GROUND FLOOR SLABS, PERIMETER WALLS, AND WATERPROOFING ARE INSTALLED AND THE PERMANENT BUILDING DRAINAGE SYSTEM IS FULLY OPERATIONAL.

6. THE SOIL TESTING LABORATORY MUST REVIEW AND MONITOR THE EXCAVATION, DEWATERING AND SOIL RETENTION SYSTEMS.

7. REFER TO SUBSURFACE EXPLORATION AND GEOTECHNICAL EVALUATION REPORT # JD225235 DATED JANUARY 24, 2024, DEVELOPED BY TERRACON, ASHBURN, VA.

SUB-GRADE PREPARATION

1. SEE GEOTECHNICAL REPORT BY TERRACON (GENERAL EXCAVATION NOTE #7) FOR SUB-GRADE PREPARATION REQUIREMENTS AND FOR REQUIREMENTS RELATED TO VAPOR BARRIER SYSTEM REQUIREMENTS. SEE CIVIL, ARCHITECTURAL AND MEP DRAWING FOR FURTHER DETAILS.

SITE FILL WITH LIGHTWEIGHT CELLULAR CONCRETE AND SETTLEMENT MONITORING

1. PER GEOTECHNICAL REPORT BY TERRACON (GENERAL EXCAVATION NOTE #7), PORTION OF SITE IS TO BE FILLED WITH LIGHTWEIGHT CELLULAR CONCRETE (LCC). THIS LCC FILL IS REQUIRED TO BRING THE SITE TO PROPOSED BUILDING GROUND ELEVATION. SEE GEOTECHNICAL REPORT FOR DETAILS REGARDING THE FILL AND SETTLEMENT MONITORING REQUIREMENTS BEFORE THE BUILDING CONSTRUCTION STARTS.

GENERAL FOUNDATION

- THE SOIL SUBGRADE FOR FOOTINGS AND SLABS MUST BE INSPECTED AND APPROVED BY THE TESTING LABORATORY IMMEDIATELY PRIOR TO PLACING FOUNDATION CONCRETE. NET DESIGN SOIL PRESSURE FOR NEW SHALLOW FOOTINGS = 3,000 PSF ON COMPETENT BEARING SOIL OR LIGHTWEIGHT CELLULAR CONCRETE (LCC) FILL.
- ALL SLAB SUBGRADE SHALL BE COMPACTED TO A MINIMUM OF 95% ASTM D-1557 DRY DENSITY. ALL BACKFILL BELOW, AROUND AND ABOVE THE FOUNDATION ELEMENTS, FOOTINGS, WALLS AND PITS SHALL BE COMPACTED TO 98% OF MAXIMUM DENSITY AT OPTIMUM MOISTURE CONTENT.
- PREPARE THE EXPOSED SUB-GRADE AS DESCRIBED IN THE GEOTECHNICAL REPORT. ALL ORGANIC AND/OR OTHER UNSUITABLE MATERIALS SHALL BE REMOVED FROM SUBGRADE AND BACKFILL AREAS AND BACKFILLED WITH ACCEPTABLE GRANULAR FILL, OR CRUSHED CONCRETE FILL MATERIAL MAXIMUM 6" OR LESS LIFTS IN LOOSE THICKNESS COMPACTED TO MINIMUM OF 95% FOR SLABS, AND 98% FOR FOOTINGS OF MAXIMUM DENSITY OBTAINED IN ACCORDANCE WITH ASTM STANDARD D-1557 MODIFIED PROCTOR DENSITY.
- FOOTINGS OR SLABS SHALL NOT BE PLACED INTO OR AGAINST SUBGRADE CONTAINING FREE WATER, FROST OR ICE. SHOULD WATER OR FROST ENTER A FOOTING EXCAVATION AFTER SUBGRADE APPROVAL, THE SUBGRADE SHALL BE REINСПECTED BY THE TESTING LABORATORY AFTER REMOVAL OF WATER OR FROST.
- THE CONTRACTOR SHALL PROVIDE ALL NECESSARY MEASURES TO PREVENT ANY FROST OR ICE FROM PENETRATING ANY FOOTING OR SLAB SUBGRADE BEFORE AND AFTER PLACING OF CONCRETE AND UNTIL SUCH SUBGRADES ARE FULLY PROTECTED BY THE PERMANENT BUILDING STRUCTURE.
- ALL SLABS-ON-GRADE SHALL BE PLACED OVER A VAPOR RETARDER OVER A MINIMUM OF 6" FREE DRAINING COMPACTED GRANULAR MATERIAL MEETING THE GRADUATION REQUIREMENTS OF GEOTECHNICAL ENGINEER APPROVED SOIL SUBGRADE.
- SEE **SUBSURFACE EXPLORATION AND GEOTECHNICAL EVALUATION REPORT # JD225235** DATED JANUARY 25, 2024, DEVELOPED BY TERRACON, ASHBURN, VA.

STRUCTURAL CONCRETE

- EMBEDDED ITEMS:
 - CONDUIT, PIPES ETC. PASSING THROUGH SLABS, WALLS, OR BEAMS MUST NOT SIGNIFICANTLY IMPAIR THE STRENGTH OF THE MEMBER. DO NOT EMBED ALUMINUM ITEMS.
 - CONDUIT AND PIPES EMBEDDED IN SLABS OR WALLS, MUST BE LIMITED TO A MAXIMUM DIAMETER OF THE SMALLER OF 1/3 OF THE SLAB OR WALL THICKNESS OR 2".
 - EMBEDDED ITEMS MUST NOT BE SPACED CLOSER THAN THREE DIAMETER ON CENTER.
 - ADDITIONAL REINFORCEMENT EQUAL TO 0.002" THE AREA OF CONCRETE MUST BE PROVIDED NORMAL TO THE EMBEDDED PIPING/CONDUITS.
 - SUBMIT EMBEDDED PIPES/CONDUITS LAYOUT DRAWINGS FOR REVIEW.
- CONCRETE PROTECTION TO REINFORCING BARS MUST BE AT LEAST EQUAL TO THE DIAMETER OF THE BARS. COVER MUST BE AS FOLLOWS, UNLESS SHOWN OTHERWISE ON PLANS AND DETAILS:

A. Poured Against Earth	3"
B. Poured Against Form Below Grade	2"
C. Slabs-on-Grade (From Top of Slab)	1 1/2"
D. Formed Slab	3/4"
E. Beams to Stirrups	1 1/2"
F. Columns to Ties	2"
G. Walls Exposed to Weather a. No. 6 through No. 18 Bars	2"
b. No. 5 Bar and Smaller	1 1/2"
H. Walls Not Exposed to Weather a. No. 11 Bar and Smaller	3/4"

STRUCTURAL CONCRETE

- CAST-IN-PLACE CONCRETE MUST BE OF THE TYPES AND HAVING MINIMUM 28-DAY COMPRESSIVE STRENGTHS INDICATED BELOW.
 - CONCRETE MUST HAVE A MINIMUM COMPRESSIVE STRENGTH OF $f_c = 4,000$ PSI WITH A MAXIMUM W/C RATIO OF 0.45, U.N.O.
 - CONCRETE EXPOSED TO WEATHER $f_c = 4,500$ PSI w/c = 0.40
- CONCRETE MUST CONTAIN AN APPROVED WATER REDUCING (AS NEEDED), PLASTICIZING ADMIXTURE (AS NEEDED) (FLY ASH, IF USED, MUST BE AS PER ACI 318 GUIDELINES). CONCRETE PERMANENTLY EXPOSED TO THE WEATHER MUST CONTAIN AN APPROVED AIR-ENTRAINING ADMIXTURE (6%). MAX. W/C RATIO = 0.40.
- REINFORCING BARS MUST BE NEW BILLET STEEL CONFORMING TO THE STANDARDS OF ASTM A615, GRADE 60. BARS USED IN WELDED CONSTRUCTION MUST CONFORM TO ASTM A706.
- WELDED WIRE FABRIC MUST CONFORM TO THE STANDARDS OF ASTM A185. WELDED WIRE FABRIC FOR SLABS MUST BE SHEETS ONLY AND NOT ROLLS.
- CONCRETE REINFORCEMENT MUST BE DETAILED, FABRICATED, LABELED SUPPORTED AND SPACED IN FORMS AND SECURED IN PLACE IN ACCORDANCE WITH THE PROCEDURES AND REQUIREMENTS OUTLINED IN THE LATEST EDITION OF THE "BUILDING CODE REQUIREMENTS FOR REINFORCED CONCRETE", ACI 318 AND THE "MANUAL OF STANDARD PRACTICE FOR DETAILING REINFORCED CONCRETE STRUCTURES" ACI 315.
- CHECKED SHOP DRAWINGS SHOWING REINFORCING DETAILS, INCLUDING STEEL SIZES, SPACING AND PLACEMENT, MUST BE SUBMITTED TO THE ARCHITECT/ ENGINEER FOR REVIEW PRIOR TO FABRICATION.
- SUBMIT DETAILED DRAWINGS SHOWING THE LOCATIONS OF CONSTRUCTION JOINTS, CURBS, SLABS DEPRESSIONS, SLEEVES, OPENINGS, ETC.
- REINFORCING SPLICES MUST CONFORM TO THE REQUIREMENTS OF ACI 318, BUT IN NO CASE MUST BE LESS THAN 30 BAR DIAMETERS FOR COMPRESSION AND/OR 40 BAR DIAMETERS FOR TENSION, U.N.O.
- WELDED WIRE FABRIC MUST BE LAPPED TWO (2) FULL MESH PANELS AND TIED SECURELY.
- WHERE REQUIRED, DOWELS MUST MATCH SIZE AND NO. OF MAIN REINFORCING.
- SEE SECTIONS FOR WALL REINFORCING REQUIREMENTS.
- CONSTRUCTION JOINTS IN WALLS MUST NOT BE FURTHER APART THAN 60 FEET. SUBMIT CONSTRUCTION JOINT LOCATION PLAN FOR WALLS AND SLABS. FOR REVIEW AND APPROVAL PRIOR TO CONSTRUCTION. CONSTRUCTION JOINTS MUST BE WIRE BRUSHED, CLEANED AND MOISTENED IMMEDIATELY PRIOR TO PLACING NEW CONCRETE.
- SEE ARCHITECTURAL DRAWINGS FOR TYPE AND LOCATION OF FLOOR FINISHES, FLOOR DEPRESSIONS, CURBS AND WATERPROOFING / DAMP-PROOFING DETAILS (WHERE APPLICABLE).
- BAR SUPPORTS IN CONTACT WITH EXPOSED SURFACES MUST BE PLASTIC TIPPED.
- DO NOT FIELD BEND OR WELD TO GRADE 60 REINFORCING STEEL.
- REBARS MUST BE SECURELY PLACED BEFORE POURING CONCRETE.

MASONRY

- MATERIAL AND WORKMANSHIP MUST BE IN ACCORDANCE WITH THE APPLICABLE STANDARDS AND SPECIFICATIONS OF THE MASONRY SOCIETY (TMS 402/ TMS 602).
- PROVIDE PRISM AND GROUT TESTS AS OUTLINED IN THE SPECIFICATIONS.
- MINIMUM COMPRESSIVE STRENGTHS OF MASONRY MATERIALS MUST BE:

CONCRETE BLOCK (ASTM C-90 GRADE N, TYPE 1)	2500 PSI
MORTAR - TYPE S (ASTM C-270)	1800 PSI (CMU)
GROUT (ASTM C-140)	3000 PSI
fm. COMPRESSIVE STRENGTH OF MASONRY REINFORCING BARS (ASTM A615)	2200 PSI GRADE 60
- VERTICAL CELLS TO BE FILLED WITH GROUT MUST BE ALIGNED TO PROVIDE A CONTINUOUS, UNOBSTRUCTED CELL OPENING OF THE DIMENSIONS SHOWN ON THE PLANS. CELLS WHICH WILL CONTAIN VERTICAL REINFORCEMENT MUST HAVE A MINIMUM OF TWO (2) INCH CLEAR OPENING.
- GROUT FOR FILLING REINFORCED OR NON-REINFORCED CELLS MUST BE FLUID AND PLACED BY ACCEPTABLE PRESSURE GROUTING PROCEDURES.
- GROUT FOR FILLING REINFORCED OR NON-REINFORCED CELLS MUST BE PLACED IN MINIMUM FIVE (5) FOOT LIFTS AND CONSOLIDATED IN PLACE BY VIBRATION OR OTHER METHODS WHICH INSURE COMPLETE FILLING OF THE CELLS. HIGHER LIFTS MUST COMPLY TMS602/CI 530.1/ASCE FOR CLAMPOUTS AND GROUT PLACEMENT. CELLS CONTAINING REINFORCING BARS AND/OR ANCHOR BOLTS MUST BE FULLY GROUTED.
- HOLLOW UNITS MUST BE LAID WITH FULL MORTAR COVERAGE ON HORIZONTAL AND VERTICAL FACE SHELLS EXCEPT THAT WEBBS MUST ALSO BE BEDDED WHERE THEY ARE ADJACENT TO CELLS TO BE REINFORCED AND/OR FILLED WITH GROUT. IN THE STARTING COURSE ON FOOTINGS AND SOLID FOUNDATION WALLS AND IN NON-REINFORCED OR GROUTED PIERS, PILASTERS AND COLUMNS.
- CUTTING AND FITTING OF MASONRY INCLUDING THAT REQUIRED TO ACCOMMODATE THE WORK OF OTHER TRADES, MUST BE DONE WITH MASONRY SAWS.
- MASONRY WALLS AND PIERS MUST HAVE 'LADUR TYPE' HORIZONTAL JOINT REINFORCING CONSISTING OF HORIZONTAL RODS WITH 9 GAGE CROSS TIES, HOT DIPPED GALVANIZED WITH 0.6 OZ. ZINC COATING, ASTM A116, CLASS 3 WITH MAXIMUM VERTICAL SPACING OF 16" O.C. UNLESS NOTED OTHERWISE ON THE MASONRY WALL SCHEDULES.
- THE MINIMUM CLEAR DISTANCE BETWEEN PARALLEL BARS EXCEPT IN COLUMNS MUST BE EQUAL TO THE NOMINAL DIAMETER OF THE BAR.
- VERTICAL REINFORCEMENT MUST BE LAP SPLICED A MINIMUM OF 48 BAR DIAMETERS (2'-0" MINIMUM) WHERE REQUIRED.
- BARS MUST BE COMPLETELY EMBEDDED IN GROUTING FILLED CORES. BARS MUST HAVE A COVERAGE OF MASONRY NOT LESS THAN:

A. BARS LARGER THAN #5	2"
B. #5 BARS OR SMALLER	1-1/2"
- PROVIDE ADEQUATE TEMPORARY BRACING AS REQUIRED DURING CONSTRUCTION TO WITHSTAND LATERAL LOADS AND THE PRESSURES OF FLUID GROUT.
- ANCHORS, WALL PLUGS, ACCESSORIES AND OTHER ITEMS TO BE BUILT IN MUST BE INSTALLED AS THE MASONRY WORK PROGRESSES. SEE ARCHITECTURAL DRAWINGS FOR ADDITIONAL DETAILS.
- SEE SPECIFICATION DIVISION 4, "MASONRY", FOR FURTHER REQUIREMENTS.
- PROVIDE PROTECTION OF NEW MASONRY AS REQUIRED BY CODE.
- FOR NON-LOAD BEARING INTERIOR CMU WALL OPENINGS LINTEL MUST BE A 8" CMU BOND BEAM WITH 2-#5 CONTINUOUS BARS AND 8" MINIMUM BEARING ON EACH SIDE.

STRUCTURAL METAL DECK

1. METAL DECK MUST BE DESIGNED FOR THE SPANS AND OTHER CONDITIONS SHOWN ON THE DRAWINGS.
2. METAL DECK SECTION PROPERTIES MUST BE COMPUTED IN ACCORDANCE WITH AISI "SPECIFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS".
3. METAL DECKING MUST BE FABRICATED FROM STEEL TYPE ASTM A653, GRADE A, HAVING A MINIMUM YIELD STRENGTH OF 50,000 PSI. ROOF METAL DECK MUST BE FORMED WITH TELESCOPED ENDS TO LAP ENDS OF SHEETS A MINIMUM OF 2 INCHES.
4. THE FABRICATOR/ERECTOR MUST PROVIDE ENGINEERING CALCULATIONS, PUBLISHED MANUFACTURER'S DATA AND INDEPENDENTLY CERTIFIED LOAD TEST DATA VERIFYING THE SPECIFIED DECK REQUIREMENTS FOR REVIEW, INCLUDING DIAGRAM AND DATA (BASED ON IBC 2018 REQUIREMENTS). PROVIDE ENGINEERED AND CHECKED SHOP DRAWINGS INDICATING LOCATION, GAGE AND SIZE OF EACH PIECE OF DECKING. THE DRAWINGS MUST CLEARLY SHOW WELDING OR FASTENER DETAILS TO STRUCTURAL FRAMING AND SIDE LAP CONNECTION DETAILS.
5. THE MINIMUM THICKNESS OF THE METAL DECK MUST BE AS NOTED ON DRAWINGS. THE FABRICATOR/ERECTOR MUST VERIFY MINIMUM THICKNESS REQUIRED TO CONFORM TO DESIGN CRITERIA AS STATED IN NOTE #13 BELOW.
6. THE METAL DECK MUST BE DESIGNED TO BE CONTINUOUS OVER THREE (3) SPANS IN THE DIRECTION INDICATED. SINGLE AND DOUBLE SPANS, IF REQUIRED, MUST SATISFY LOAD AND DEFLECTION REQUIREMENTS.
7. THE DECK MUST BE DESIGNED FOR AN ASSUMED SUITABLE CONSTRUCTION LIVE LOAD TAKING INTO CONSIDERATION THE PARTICULAR METHOD OF CONCRETE PLACEMENT TO BE USED ON THIS PROJECT. SPAN AND LOAD CONDITIONS INDICATED BY THE SUPPORTING FRAMEWORK, OPENINGS AND ACTUAL PIECE SIZES UTILIZED. THE ASSUMED CONSTRUCTION LIVE LOAD MUST NOT BE LESS THAN 20 PSF. THE CONCRETE CONTRACTOR MUST NOT EXCEED THE ASSUMED CONSTRUCTION DESIGN LIVE LOAD WITHOUT FIRST TAKING PROPER SAFETY PRECAUTIONS SUCH AS SHORING, ETC. ADDITIONALLY, FOLLOW APPLICABLE CITY, LOCAL AND AISI REQUIREMENTS IF MORE STRINGENT.
8. DESIGN CRITERIA:
 - A. METAL DECK: (CONSTRUCTION LOADS ONLY)
 1. MAXIMUM DECK DEFLECTION FOR CONCRETE WET WEIGHT MUST BE LESS THAN OR EQUAL TO 0.5 INCHES COMPUTED EITHER ON A SINGLE SPAN BASIS, OR ON LOADING ONLY ONE (1) SPAN FOR MULTIPLE SPAN CONDITIONS.
 2. MAXIMUM STRESS IN DECK FOR CONCRETE WET WEIGHT AND CONSTRUCTION LOADS MUST BE LESS THAN OR EQUAL TO 0.6FY (FY=YIELD STRESS) COMPUTED EITHER ON A SINGLE SPAN BASIS, OR ON LOADING ONLY ONE (1) SPAN FOR MULTIPLE SPAN DECKS.
 - B. NON-COMPOSITE ROOF DECKS:
 1. MAXIMUM DECK DEFLECTION UNDER TOTAL SUPERIMPOSED LOAD MUST BE LESS THAN OR EQUAL TO L/240, OR ONE INCH MAXIMUM, COMPUTED EITHER ON A SINGLE SPAN BASIS, OR ON LOADING ON ONLY ONE (1) SPAN FOR MULTIPLE SPAN CONDITIONS.
 2. MAXIMUM STRESS IN DECK FOR TOTAL SUPERIMPOSED LOAD MUST BE LESS THAN OR EQUAL TO 0.6FY.
 9. PROVIDE CONTINUOUS SHEET METAL CLOSURES AT SLAB OPENINGS AND SLAB EDGES AND CONTINUOUS DECK CLOSURE AT DECK ENDS AS REQUIRED BY SDI (UNLESS DETAILED OTHERWISE).
 10. PROVIDE 18ga RIDGE, HIP AND VALLEY BENT PLATE W/ 2 - #12 SCREWS AT 6" O.C.
11. DO NOT ATTACH MEP RELATED CONDUITS, UNITS AND OTHER ITEMS WEIGHTING MORE THAN 50 LBS DIRECTLY TO NON-COMPOSITE ROOF DECKS. MEP RELATED ITEMS MUST BE ATTACHED/HUNG TO/FROM THE FRAMING MEMBERS.

DECK PROPERTIES

DECK TYPE	GAUGE	DESIGN THICKNESS	Ip (in ⁴ /ft)	Sp (in ³ /ft)
3" COMPOSITE	18			
2" COMPOSITE	18	0.0474"	0.559	0.495
1 1/2" ROOF-B	20	0.0358"	0.201	0.234
1 1/2" ROOF-B	22	0.0295"	0.155	0.186

LIGHT-GAUGE STEEL FRAMING

1. STRUCTURAL PROPERTIES AND CAPACITIES OF STEEL FRAMING COMPONENTS MUST BE IN ACCORDANCE WITH THE AISI COLD-FORMED DESIGN SPECIFICATION.
2. TEMPORARY BRACING MUST BE PROVIDED AND REMAIN IN PLACE UNTIL WORK IS COMPLETELY STABILIZED.
3. FIELD CUTTING OF STUDS MUST BE DONE BY SAWING OR SHEARING. TORCH CUTTING OF COLD-FORMED MEMBERS IS UNACCEPTABLE. WHEN REQUIRED FOR BRIDGING PURPOSES, FRAMING FABRICATOR IS TO ENSURE PUNCHOUT ALIGNMENT WHEN ASSEMBLING FRAMING AND FIELD CUTTING STUDS TO LENGTH.
4. NO SPLICES IN STUDS, JOIST, OR OTHER LOAD CARRYING MEMBERS MAY BE MADE WITHOUT PRIOR ENGINEERING REVIEW AND SPECIFIC DETAILS FOR SUCH SPLICE(S).
5. WHERE SPLICING OF WALL TRACK IS NECESSARY BETWEEN STUD SPACINGS, A PIECE OF STUD MUST BE PLACED IN THE ADJOINING TRACK SECTIONS AND FASTENED TO THE TRACK FLANGES AT BOTH SIDES OF THE WALL OR THE TRACKS MUST BE BUTTED TIGHT TOGETHER AND FASTENED TO STRUCTURE EITHER SIDE OF THE JOINT.
6. IF REQUIRED, WELDED CONNECTIONS ARE TO BE PERFORMED IN ACCORDANCE WITH THE LATEST VERSION OF AWS D1.3 SPECIFICATIONS FOR WELDING SHEET STEEL IN STRUCTURES. CONSULT AWS D1.9.0 WELDING ZINC COATED STEEL AND ANSI STANDARD Z49.1 FOR INFORMATION REGARDING SAFE WELDING PROCEDURES. WELDS ARE TO BE TOUCHED-UP WITH A RUST INHIBITIVE GALVANIZED PAINT.
7. SUGGESTED WELD METAL AND PROCESS FOR SHOP WELDING ARE: 60 KSI WELD METAL STRENGTH (MINIMUM) - MIG, SUGGESTED METHODS FOR FIELD WELDING: 1/8" (UNLESS NOTED OTHERWISE) E60XX (MINIMUM) ELECTRODE - SMAW, OR "GASLESS" MIG.
8. UNLESS NOTED OTHERWISE, REFER TO LITERATURE PUBLISHED BY HILTI FASTENING SYSTEMS, INC. FOR ANCHOR BOLT, AND POWER DRIVEN FASTENER INFORMATION. USE 1 INCH MINIMUM EMBEDMENT FOR EACH POWER DRIVEN FASTENER UNLESS NOTED OTHERWISE. REFER TO BUILDEX, INC. TECHNICAL INFORMATION FOR TEKS SCREW DATA. ALTERNATE MANUFACTURER'S FASTENERS OF COMPARABLE SPECIFICATIONS AND LOAD CAPACITIES ARE ACCEPTABLE.
9. STUD, JOIST, AND TRUSS MEMBERS 54 mils (16 GAUGE) AND HEAVIER MUST BE FORMED STEEL CORRESPONDING TO A TYPE LISTED IN THE AISI SPECIFICATION FOR THE DESIGN OF COLD-FORMED STEEL STRUCTURAL MEMBERS, WITH A MINIMUM YIELD STRENGTH OF 50 KSI.
10. 43 mils (18 GAUGE) AND LIGHTER MEMBERS, AN TRACK BRIDGING AND ACCESSORY ITEMS MUST BE FORMED STEEL, MEETING THE CRITERIA AS LISTED ABOVE, WITH A MINIMUM YIELD STRENGTH OF 33 KSI UNLESS SPECIFICALLY NOTED OTHERWISE.
11. FRAMING COMPONENTS MUST BE CUT SQUARELY FOR ATTACHMENT TO PERPENDICULAR MEMBERS OR AS REQUIRED FOR AN ANGULAR FIT AGAINST ABUTTING MEMBERS. MEMBERS MUST BE HELD POSITIVELY IN PLACE UNTIL PROPERLY FASTENED.
12. FRAMING PRODUCTS MUST BE FORMED FROM STEEL POSSESSING A G-60 (INTERIOR) G-90 (EXTERIOR) ZINC COATING CORRESPONDING TO THE MINIMUM REQUIREMENTS OF ASTM A525.
13. STRUCTURAL PROPERTIES USED IN DESIGN ARE THOSE PUBLISHED BY "STEEL STUD MANUFACTURERS ASSOC." (SSMA). MANUFACTURERS MUST PROVIDE MEMBERS TO THESE PROPERTIES AND SPECIFICATIONS. DESIGN PROPERTIES MUST BE A MINIMUM OF 95% OF THE BASIS OF DESIGN.
14. LIGHT-GAUGE STEEL CONTRACTOR MAY PROPOSE SUBSTITUTES FOR FRAMING SYSTEMS. PROVIDE DRAWINGS & CALCULATIONS FOR SUBSTITUTIONS SIGNED AND SEALED BY A REGISTERED PROFESSIONAL STRUCTURAL ENGINEER, LICENSED IN ANY STATE IN THE UNITED STATES, FOR REVIEW.
15. LIGHT-GAUGE STEEL CONTRACTOR MUST DESIGN AND SUBMIT CONNECTIONS. CONNECTIONS ASSUMED TO BE SCREWED.
16. SEE ARCHITECTURAL DRAWINGS FOR NON-LOAD BEARING WALL LOCATIONS.
17. LIGHT GAUGE STEEL NOMENCLATURE
S 362 162-54
362 - MEMBER DEPTH = 3-5/8"
S - MEMBER STYLE
S = STUD OR JOIST
T = TRACK
162 - FLANGE WIDTH = 1-5/8"
54 - MATERIAL THICKNESS IN mils

MATERIAL THICKNESS / GAUGE			
MILLS	GAUGE	DESIGN THICKNESS	MINIMUM THICKNESS
33	20	0.0346"	0.0329"
43	18	0.0451"	0.0428"
54	16	0.0566"	0.0538"
68	14	0.0713"	0.0677"
97	12	0.1017"	0.0969"

STRUCTURAL STEEL

- STRUCTURAL STEEL MUST BE ASTM A992 GR 50 UNLESS NOTED OTHERWISE. STRUCTURAL CONNECTION PLATES AND ANGLES MUST BE ASTM A36 GRADE STEEL. STRUCTURAL HSS SECTIONS MUST BE ASTM A500 GRADE C.
- BOLTS, NUTS AND WASHERS MUST CONFORM TO THE REQUIREMENTS OF ASTM A325/A490. BOLTS MUST BE $3/4'' \varnothing$ MINIMUM, UNLESS NOTED OTHERWISE.
- ANCHOR RODS MUST BE ASTM F1554 GR. 36 ROD (UNLESS NOTED OTHERWISE) AND PLACED WITHIN A $1/8'' (\frac{1}{8})$ TOLERANCE FROM DIMENSIONS AS SHOWN ON DRAWINGS. IN-PLACE ANCHOR ROD LOCATIONS MUST BE VERIFIED IN THE FIELD BEFORE FABRICATION OF BASE PLATES.
- DETAILED, FABRICATION AND ERECTION MUST CONFORM TO AISC SPECIFICATIONS, LATEST EDITIONS.
- WELDING MUST BE DONE BY QUALIFIED WELDERS AND MUST CONFORM TO THE AWS, "CODE FOR ARC AND GAS WELDING IN BUILDING CONSTRUCTION", LATEST EDITION. WELDING ELECTRODES MUST BE E70XX.
- CONNECTIONS OTHER THAN FOR THE LATERAL-LOAD CARRYING SYSTEMS (DOP DESIGNED) MUST BE DESIGNED AND DETAILED BY THE FABRICATOR. DETAILING MUST BE PERFORMED USING RATIONAL ENGINEERING DESIGN AND STANDARD PRACTICE IN ACCORDANCE WITH THE CONTRACT DOCUMENTS. THE GENERAL DETAILS SHOWN ON THE DRAWINGS ARE CONCEPTUAL ONLY AND DO NOT INDICATE THE REQUIRED NUMBER OF BOLTS OR WELD SIZES. UNLESS SPECIFICALLY NOTED, SUBMIT CONNECTION DESIGN CALCULATIONS SIGNED AND SEALED BY A REGISTERED PROFESSIONAL STRUCTURAL ENGINEER, LICENSED IN ANY STATE IN THE UNITED STATES, WITH THE STRUCTURAL STEEL SHOP DRAWINGS, FOR REVIEW.
- OTHER CONNECTIONS MUST BE SIMPLE SHEAR CONNECTIONS UTILIZING HIGH-STRENGTH BOLTS IN BEARING TYPE CONNECTIONS. THE CAPACITIES MUST BE AS SHOWN BELOW, UNLESS NOTED OTHERWISE.
- MINIMUM SHEAR (FACTORED, LRFD) CAPACITIES: (FOR STANDARD ROLLED SHAPES, COMPOSITE AND NON-COMPOSITE)

BEAM SIZE	FACTORED REACTION	BEAM SIZE	FACTORED REACTION
W8x10 TO x21	16 KIPS	W10x12 TO x26	16 KIPS
W12x14 TO x19	28 KIPS	W12x22 TO x40	36 KIPS
W14x22 TO x26	30 KIPS	W14x30 TO x53	36 KIPS
W16x26 TO x31	42 KIPS	W16x38 TO x57	60 KIPS
W18x35 TO x46	55 KIPS	W18x48 TO x71	50 KIPS
W21x44 TO x57	80 KIPS	W21x62 TO x93	120 KIPS
W24x55 TO x62	90 KIPS	W24x68 TO x94	130 KIPS
W27x84 TO x114	150 KIPS		
BAL BM SIZES	SEE PLANS		

STRUCTURAL STEEL

- THE MINIMUM NUMBER OF BOLTS PER CONNECTION MUST BE TWO (2).
- SIMPLE SHEAR CONNECTIONS MUST BE CAPABLE OF END ROTATION AS PER THE REQUIREMENTS OF THE AISC CODE.
- MINIMUM FILLET WELDS MUST COMPLY WITH THE AISC, BUT MUST NOT BE LESS THAN $1/4$ INCH, UNLESS NOTED OTHERWISE.
- SHOP AND FIELD TESTING OF WELDS AND BOLTS MUST BE AS FOLLOWS:
 - WELDS MUST BE VISUALLY INSPECTED.
 - FILLET WELDS FOR BEAM AND GIRDER SHEAR CONNECTION PLATES (SEE SPECIFICATION) MUST BE CHECKED BY MAGNETIC PARTICLE FOR FINAL PASS ONLY.
 - ULTRASONICALLY TEST (SEE SPECIFICATION) OF FULL PENETRATION WELDS.
 - CHECK BY CALIBRATED TORQUE WRENCH 25 PERCENT OF BOLTS IN EACH SHEAR CONNECTION, BUT NOT LESS THAN TWO (2) BOLTS PER CONNECTION.
 - CHECK 100 PERCENT OF CONTINUITY PLATE AND DIRECT TENSION FILLET WELDS BY MAGNETIC PARTICLE FOR THE FINAL PASS.
- THE TESTING AGENCY MUST PERFORM SHOP AND FIELD INSPECTION AND TESTING AS OUTLINED ABOVE.
- THE STRUCTURAL STEEL FABRICATOR AND ERECTOR MUST SCHEDULE WORK TO ALLOW THE ABOVE TESTING REQUIREMENTS TO BE COMPLETED.
- BEAMS MUST BE FABRICATED WITH THE NATURAL CAMBER UP. PROVIDE CAMBERS AS INDICATED ON THE DRAWINGS.
- AFTER FABRICATION, STEEL MUST BE CLEANED OF RUST, LOOSE MILL SCALE AND OTHER FOREIGN MATERIALS.
- PROVIDE CONTROL OF ERECTION PROCEDURES AND SEQUENCES WITH RELATION TO TEMPERATURE DIFFERENTIALS, ESPECIALLY WITH RESPECT TO STRUCTURAL STEEL FRAMING INTO EXISTING AND NEW CONCRETE WALLS, BEAMS OR COLUMNS.
- THERE MUST BE NO FIELD CUTTING OF STRUCTURAL STEEL MEMBERS FOR THE WORK OF OTHER TRADES WITHOUT THE PRIOR APPROVAL OF THE CONTRACTING OFFICER.
- ADDITIONAL STEEL REQUIRED FOR ERECTION PURPOSES AND SITE ACCESS OF STOCK-PILE MATERIALS MUST BE PROVIDED AT NO COST. ADDITIONAL STEEL USED FOR THIS PURPOSE MUST BE REMOVED.
- EXPANSION ANCHORS MUST BE HILTI - KWIK-BOLT, SIMPSON WEDGE, ADHESIVE ANCHORS MUST BE HILTI - HIT HY200, SIMPSON SET, SCREW ANCHORS MUST BE HILTI-HUS-H, SIMPSON TITEN-HD OR EQUIVALENT.
- EXAMPLE ANCHOR EQUIVALENTS:
 - $5/8'' \varnothing$ HILTI HY-200 ANCHORS AT $2-0''$ O.C. ($5''$ EMBED) OR, $5/8'' \varnothing$ SIMPSON SET ANCHORS AT $2-0''$ O.C. ($5''$ EMBED)
 - $1/2'' \varnothing$ HILTI HY-200 ANCHORS AT $2-8''$ O.C. ($41/2''$ EMBED) OR, $1/2'' \varnothing$ SIMPSON SET ANCHORS AT $2-8''$ O.C. ($41/2''$ EMBED)
 - $1/2'' \varnothing$ KWIK BOLT-3 ($41/2''$ EMBED) OR, $1/2'' \varnothing$ SIMPSON WEDGE ($41/2''$ EMBED)
- STEEL EXPOSED TO WEATHER - COLUMNS, BEAMS, BOLTS, PLATES, ANCHOR BOLTS, ETC. MUST BE HOT-DIPPED GALVANIZED AFTER FABRICATION. AREA REQUIRING FIELD WELDS MUST HAVE THE GALVANIZING REMOVED BEFORE WELDING. FIELD WELDS MUST BE PAINTED WITH AN APPROVED ZINC-RICH PAINT. GALVANIZING MUST CONFORM TO ASTM A123.

LIGHT-GAUGE ROOF TRUSS FRAMING

- ROOF TRUSS MANUFACTURER MUST PROVIDE CALCULATIONS FOR ROOF & EAVE TRUSSES INCLUDING CONNECTION CALCULATIONS. SUBMIT SIGNED & SEALED CALCULATIONS/ DRAWINGS BY A PROFESSIONAL STRUCTURAL ENGINEER LICENSED IN ANY STATE IN THE UNITED STATES, FOR REVIEW.
- ROOF TRUSS MANUFACTURER MUST DESIGN AND DETAIL EAVE TRUSS CONNECTIONS TO THE CONCRETE/ PRECAST/ MASONRY OR LIGHT-GAUGE STUDS AND TRUSSSES ENDS. COORDINATE W/ EOR AND SPECIALTY CONTRACTOR.
- MINIMUM GAUGE FOR ROOF TRUSS MEMBER MUST BE 20GA (33 MIL) AND 18GA (43 MIL) FOR TOP CHORD MEMBER.
- SEE SHEETS S012 FOR TRUSS DESIGN LOADS.
- ALL HANGING LOADS SHALL BE SUPPORTED ONLY AT THE TRUSS PANEL POINTS. NO HOLES SHALL BE DRILLED OR BURNED IN THE TOP OR BOTTOM CHORD OF TRUSS.
- DESIGN ALL TRUSSSES FOR A **2,250 LBS. POINT LOAD** APPLIED AT ANY LOCATION AT THE TOP CHORD OR AT A BOTTOM CHORD PANEL POINT, U.N.O.
- TRUSS MANUFACTURER SHALL DESIGN ALL TRUSSES FOR UPLIFT FORCES AS REQUIRED PER INTERNATIONAL BUILDING CODE, IBC 2012, AND, FOR WIND UPLIFT PRESSURES AS LISTED ON COMPONENT & CLADDING LOADING DIAGRAM. MINIMUM NET UPLIFT = 20 PSF (WORKING LOAD).
- COORDINATE ROOF TRUSS DESIGN WITH FALL ARREST SYSTEM (WHERE REQUIRED) IMPOSED LOADS ON THE TRUSSSES.

ABBREVIATIONS & SYMBOLS

A.B.	ANCHOR BOLT	THK.	THICK
ADJ.	ADJACENT	THD.	THREAD
ADDL.	ADDITIONAL	T.D.	TRENCH DRAIN
ARCH.	ARCHITECTURAL	T.W.	TACK WIRE
BAL.	BALANCE	TYP.	TYPICAL
B.O.F.	BOTTOM OF FOOTING	T&B.	TOP AND BOTTOM
BM	BEAM	T/FLOOR	TOP OF FLOOR
BOT.	BOTTOM	T/FTG.	TOP OF FOOTING
B.S.	BOTH SIDES	T/STL.	TOP OF STEEL
BSMT.	BASEMENT	T/SLAB	TOP OF SLAB
		T/W	TOP OF WALL
C.	CAMBER	U.N.O.	UNLESS NOTED OTHERWISE
CANT.	CANTILEVER	V.I.F.	VERIFY IN FIELD
C/C OR C.C.	CENTER TO CENTER	W.	WIDE, WIDTH
CL.	CENTER LINE	W.W.F.	WELDED WIRE FABRIC
COL.	COLUMN	W.I.	WITH
CONC.	CONCRETE	W.P.	WORKING POINT
CONN.	CONNECTION	W.S.	WATER STOP
CONST.	CONSTRUCTION	WT.	WEIGHT
CONT.	CONTINUOUS		
DET.	DETAIL	<	ANGLE
DIA.	DIAMETER	@	AT
DN.	DOWN	&	AND
DVG.	DRAWING	€	CENTERLINE
DWL.	DOWEL	Ø	DIAETER
E.A.	EACH	%	PERCENT
E.F.	EACH FACE	#	POUND
EL.	ELEVATION	⊕	PLATE
EQUIP.	EQUIPMENT	O	ROUND
E.W.	EACH WAY		
E.W.E.F.	EACH WAY EACH FACE		
EXIST.	EXISTING		
EXP.	EXPANSION		
EXT.	EXTERIOR		
F.D.	FLOOR DRAIN		ELEVATION TARGET
FON.	FOUNDATION		SECTION NUMBER
FAS.	FASTEN, FASTENER		SHEET NUMBER
FIN.	FINISHED)		SIMPLE SHEAR CONNECTION
FL.	FLOOR		FULL MOMENT CONNECTION
FT.	FOOT OR FEET		
FTG.	FOOTING		
GEN.	GENERAL		
H.	HIGH		
H.H.N.	HEXAGONAL HEAD NUT		
HORIZ.	HORIZONTAL		
H.P.	HIGH POINT		
H.S.	HIGH STRENGTH		
I.D.	INSIDE DIAMETER		
IN.	INCH OR INCHES		
INFO.	INFORMATION		
INV.	INVERT		
J.T.	JOINT		
K.	KIP (ONE THOUSAND POUNDS)		
KSI.	KIP PER SQUARE INCH		
L.	SPAN, FEET OR INCHES		
LOCA.	LOCATION		
L.P.	LOW POINT		
LT. WT.	LIGHT WEIGHT		
MAX.	MAXIMUM		
MECH.	MECHANIC(AL)		
MFR.	MANUFACTURER		
MIN.	MINIMUM		
N.T.S.	NOT TO SCALE		
O.C.	ON CENTER(S)		
OPNG.	OPENING		
OPP.H.	OPPOSITE HAND		
PMJ.	PREMOLDED JOINT		
PSI	POUNDS PER SQUARE INCH PSF		
	POUNDS PER SQUARE FOOT		
P.V.C.	POLYVINYL CHLORIDE		
R.D.	ROOF DRAIN		
REINF.	REINFORCING		
REQ.	REQUIRED		
SCHED.	SCHEDULE		
SIM.	SIMILAR		
SPCS.	SPECIFICATIONS		
STD.	STANDARD		
STRUCT.	STRUCTURE		
SQ.	SQUARE		

STRUCTURAL QUALITY ASSURANCE PLAN

GENERAL

THE STRUCTURE IS DESIGNED PER THE INTERNATIONAL BUILDING CODE (IBC), 2021 EDITION WITH FRISCO AMENDMENTS, EFFECTIVE 01-01-2023. THIS STRUCTURAL QUALITY ASSURANCE PLAN IDENTIFIES THE RESPONSIBILITIES OF THE CONTRACTOR AND THE SPECIAL INSPECTOR AS DEFINED IN IBC 2021 CHAPTER 17 AND AMENDMENTS, IN PERFORMING THE TESTING AND INSPECTION OF THE WORK REQUIRED BY CHAPTER 17 OF THE IBC THAT IS WITHIN THE SCOPE OF THE STRUCTURAL ENGINEERING SERVICES FOR THIS PROJECT. THE FOLLOWING MUST NOT BE CONSIDERED AS THE EXHAUSTIVE LIST OF INSPECTIONS REQUIRED. REFER TO IBC 2021 CHAPTER 17 AND OTHER PORTIONS OF CONSTRUCTION DOCUMENTS AND SPECIFICATIONS FOR TESTING AND INSPECTION REQUIRED OF STRUCTURAL, ARCHITECTURAL, MECHANICAL, ELECTRICAL, OR OTHER BUILDING COMPONENTS.

CONTRACTOR'S RESPONSIBILITIES

THE CONTRACTOR MUST SUBMIT TO THE AUTHORITY HAVING JURISDICTION AND THE A/E A WRITTEN STATEMENT OF RESPONSIBILITY THAT CONTAINS THE FOLLOWING:

- ACKNOWLEDGEMENT OF AWARENESS OF THE INSPECTION REQUIREMENTS CONTAINED WITHIN THIS STRUCTURAL QUALITY ASSURANCE PLAN.
- ACKNOWLEDGEMENT THAT CONTROL MUST BE EXERCISED TO OBTAIN CONFORMANCE WITH THE CONSTRUCTION DOCUMENTS APPROVED BY THE AUTHORITY HAVING JURISDICTION.
- PROCEDURES FOR EXERCISING CONTROL WITHIN CONTRACTOR'S ORGANIZATION, THE METHOD AND FREQUENCY OF REPORTING, AND THE DISTRIBUTION OF REPORTS.
- IDENTIFICATION AND QUALIFICATIONS OF THE PERSON(S) EXERCISING SUCH CONTROL AND THEIR POSITION(S) IN THE ORGANIZATION.

THE CONTRACTOR IS RESPONSIBLE TO ENSURE THAT THE SPECIAL INSPECTOR IS PRESENT FOR ALL WORK REQUIRING INSPECTION. ANY WORK THAT REQUIRES SPECIAL INSPECTION AND IS PERFORMED WITHOUT THE INSPECTOR BEING PRESENT IS SUBJECT TO BEING DEMOLISHED AND RECONSTRUCTED.

CONTRACTOR HAS THE FOLLOWING RESPONSIBILITIES TO THE SPECIAL INSPECTOR:

- PROVIDE COPY OF CONSTRUCTION DOCUMENTS TO THE INSPECTOR.
- NOTIFY THE INSPECTOR SUFFICIENTLY IN ADVANCE OF OPERATIONS TO ALLOW ASSIGNMENT OF PERSONNEL AND SCHEDULING OF TESTS.
- COOPERATE WITH THE INSPECTOR AND PROVIDE ACCESS TO WORK.
- PROVIDE SAMPLES OF MATERIALS TO BE TESTED IN REQUIRED QUANTITIES.
- PROVIDE LABOR TO ASSIST THE INSPECTOR IN PERFORMING TESTS / INSPECTIONS.

SPECIAL INSPECTOR'S RESPONSIBILITIES

THE SPECIAL INSPECTOR MUST MEET THE REQUIREMENTS OF IBC CHAPTER 17 WITH FRISCO AMENDMENTS.

THE INSPECTOR MUST MAINTAIN RECORDS OF INSPECTIONS IN ACCORDANCE WITH CHAPTER 17 OF THE IBC CODE AND MUST DISTRIBUTE THESE RECORDS TO AUTHORITY HAVING JURISDICTION, ARCHITECT AND STRUCTURAL ENGINEER ON A WEEKLY BASIS.

AT THE CONCLUSION OF THE PROJECT, THE INSPECTOR MUST SUBMIT A WRITTEN STATEMENT THAT THE QUALITY CONTROL INSPECTIONS DURING CONSTRUCTION HAVE COMPILED WITH THIS STRUCTURAL ASSURANCE PLAN AND THAT ANY DISCREPANCIES NOTED DURING CONSTRUCTION HAVE BEEN CORRECTED.

TABLE 1

REQUIRED SPECIAL INSPECTIONS AND TESTS OF SOILS (ADAPTION OF 2021 IBC - TABLE 1705.6)		
TYPE	CONTINUOUS SPECIAL INSPECTION	PERIODIC SPECIAL INSPECTION
1. VERIFY MATERIALS BELOW SHALLOW FOUNDATIONS ARE ADEQUATE TO ACHIEVE THE DESIGN BEARING CAPACITY.	-	X
2. VERIFY EXCAVATIONS ARE EXTENDED TO PROPER DEPTH AND HAVE REACHED PROPER MATERIAL.	-	X
3. PERFORM CLASSIFICATION AND TESTING OF COMPACTED FILL MATERIALS	-	X
4. DURING FILL PLACEMENT, VERIFY USE OF PROPER MATERIALS AND PROCEDURES IN ACCORDANCE WITH THE PROVISIONS OF THE APPROVED GEOTECHNICAL REPORT, VERIFY DENSITIES AND LIFT THICKNESS DURING PLACEMENT AND COMPACTION OF COMPACTED FILL.	X	-
5. PRIOR TO PLACEMENT OF COMPACTED FILL, INSPECT SUBGRADE AND VERIFY THAT SITE HAS BEEN PREPARED PROPERLY.	-	X

TABLE 2

REQUIRED SPECIAL INSPECTIONS AND TESTS OF CONCRETE CONSTRUCTION (ADAPTION OF 2021 IBC - TABLE 1705.3)				
TYPE	CONTINUOUS SPECIAL INSPECTION	PERIODIC SPECIAL INSPECTION	REFERENCED STANDARD ^a	IBC REFERENCE
1. INSPECT REINFORCEMENT, INCLUDING PRESTRESSING TENDONS, AND VERIFY PLACEMENT.	-	X	ACI 318 Ch. 20, 25.2, 25.3, 26.6, 126.5.3	-
2. REINFORCING BAR WELDS:				
A. VERIFY WELDABILITY OF REINFORCING BARS OTHER THAN ASTM A 706.	-	X		
B. INSPECT SINGLE-PASS FILLET WELDS, MAXIMUM 1/8", AND INSPECT ALL OTHER WELDS.	-	X	AWS D14 ACI 318: 26.6.4	-
3. INSPECT ANCHORS CAST IN CONCRETE	-	X	ACI 318: 17.8.2	-
4. INSPECT ANCHORS POST-INSTALLED IN HARDENED CONCRETE MEMBERS ^b :				
A. ADHESIVE ANCHORS LOCATED IN HORIZONTAL OR UPWARDLY INCLINED ORIENTATION THAT RESIST SUSTAINED TENSION LOADS.	X	-	ACI 318: 17.8.2.4	
B. MECHANICAL ANCHORS AND ADHESIVE ANCHORS NOT DEFINED IN A.	-	X	ACI 318: 17.8.2	
5. VERIFY USE OF REQUIRED DESIGN MIX.	-	X	ACI 318: Ch. 19, 26.4.3, 26.4.4	1904.1, 1904.2
6. PRIOR TO CONCRETE PLACEMENT, FABRICATE SPECIMENS FOR STRENGTH TESTS, PERFORM SLUMP AND AIR CONTENT TESTS, AND DETERMINE THE TEMPERATURE OF THE CONCRETE.	X	-	ASTM C 172 ASTM C31 ACI 318: 26.5, 26.12	-
7. INSPECT CONCRETE AND SHOTCRETE PLACEMENT FOR PROPER APPLICATION TECHNIQUES.	X	-	ACI 318: 26.5	-
8. VERIFY MAINTENANCE OF SPECIFIED CURING TEMPERATURE AND TECHNIQUES.	-	X	ACI 318: 26.5.3-26.5.5	-
9. INSPECT PRESTRESSED CONCRETE FOR:				
A. APPLICATION OF PRESTRESSING FORCES.	X	-	ACI 318: 26.10	
B. GROUTING OF BONDED PRESTRESSING	-	-		
10. INSPECT ERECTION OF PRECAST CONCRETE MEMBERS.	-	X	ACI 318: Ch. 26.9	-
11. FOR PRECAST CONCRETE DIAPHRAGM CONNECTIONS OR REINFORCEMENT AT JOINTS CLASSIFIED AS MODERATE OR HIGH DEFORMABILITY IN STRUCTURES ASSIGNED TO SEISMIC DESIGN CATEGORY C, D, E, OR F:				
A. INSTALLATION OF THE EMBEDDED PARTS.	X	-		
B. CHECKING OF THE CONTINUITY OF REINF. ACROSS JOINTS.	-	X	ACI 550.5	
C. COMPLETION OF CONNECTIONS IN FIELD.	X	-		
12. INSPECT INSTALLATION TOLERANCES OF PRECAST CONCRETE DIAPHRAGM CONNECTIONS FOR COMPLIANCE WITH ACI 550.5.	-	X	ACI 318: 26.13.1.3	-
13. VERIFY IN-SITU CONCRETE STRENGTH, PRIOR TO STRESSING OF TENDONS IN POST-TENSIONED CONCRETE AND PRIOR TO REMOVAL OF SHORES AND FORMS FROM BEAMS AND STRUCTURAL SLABS.	-	X	ACI 318: 26.11.2	-
14. INSPECT FORMWORK FOR SHAPE, LOCATION AND DIMENSIONS OF THE CONCRETE MEMBER BEING FORMED.	-	X	ACI 318: 26.11.1.2 (b)	-

^a WHERE APPLICABLE, SEE ALSO 2021 IBC SECTION 1705.13, SPECIAL INSPECTIONS FOR SEISMIC RESISTANCE.

^b SPECIFIC REQUIREMENTS FOR SPECIAL INSPECTION MUST BE INCLUDED IN THE RESEARCH REPORT FOR THE ANCHOR ISSUED BY AN APPROVED SOURCE IN ACCORDANCE WITH 17.8.2 IN ACI 318. OR OTHER QUALIFICATION PROCEDURES, WHERE SPECIFIC REQUIREMENTS ARE NOT PROVIDED, SPECIAL INSPECTION REQUIREMENTS MUST BE SPECIFIED BY THE REGISTERED DESIGN PROFESSIONAL AND MUST BE APPROVED BY THE AUTHORITY HAVING JURISDICTION PRIOR TO THE COMMENCEMENT OF WORK.

TABLE 3

INSPECTION TASKS PRIOR TO WELDING (ADAPTION OF AISC 360-16 TABLE C-N5.4-1)	
INSPECTION TASKS PRIOR TO WELDING	QA
WELDING PROCEDURE SPECIFICATIONS (WPSs) AVAILABLE	P
MANUFACTURER CERTIFICATIONS FOR WELDING CONSUMABLES AVAILABLE	P
MATERIAL IDENTIFICATION (TYPE/GRADE)	O
WELDER IDENTIFICATION SYSTEM ^a	O
FIT-UP OF GROOVE WELDS (INCLUDING JOINT GEOMETRY)	
• JOINT PREPARATION	
• GROOVE ALIGNMENT, ROOT OPENING, ROOT FACE, BEVEL, CLEANLINESS (CONDITION OF STEEL SURFACES)	
• TACKING (TACK WELD QUALITY AND LOCATION)	
• BACKING (TYPE AND FIT (IF APPLICABLE))	O
CONFIGURATION AND FINISH OF ACCESS HOLES	O
FIT-UP OF FILLET WELDS	
• DIMENSIONS (ALIGNMENT, GAPS AT ROOT)	
• CLEANLINESS (CONDITION OF STEEL SURFACES) - TACKING (TACK WELD QUALITY AND LOCATION)	O
CHECK WELDING EQUIPMENT	

^a THE FABRICATOR OR ERECTOR, AS APPLICABLE, MUST MAINTAIN A SYSTEM BY WHICH A WELDER WHO HAS WELDED A JOINT OR MEMBER CAN BE IDENTIFIED. STAMPS, IF USED, MUST BE LOW-STRESS TYPE.

NOTES:

1. "CONTINUOUS SPECIAL INSPECTION" INDICATES SPECIAL INSPECTION BY THE SPECIAL INSPECTOR WHO IS PRESENT WHEN AND WHERE THE WORK TO BE INSPECTED IS BEING PERFORMED.

2. "PERIODIC SPECIAL INSPECTION" INDICATES SPECIAL INSPECTION BY THE SPECIAL INSPECTOR WHO IS PRESENT WHEN AND WHERE THE WORK TO BE INSPECTED HAS BEEN OR IS BEING PERFORMED.

3. "P" INDICATES TO PERFORM THESE TASKS FOR EACH WELDED JOINT OR MEMBER, FOR EACH BOLTED CONNECTION, AND EACH STEEL ELEMENT.

4. "O" INDICATES TO OBSERVE THESE ITEMS ON A RANDOM BASIS. OPERATIONS NEED NOT BE DELAYED PENDING THESE INSPECTIONS.

5. "QA" INDICATES QUALITY ASSURANCE AS SPECIFIED IN CHAPTER N OF AISC 360-16.

TABLE 4

INSPECTION TASKS DURING WELDING (ADAPTION OF AISC 360-16 TABLE C-N5.4-2)	
INSPECTION TASKS DURING WELDING	QA
USE OF QUALIFIED WELDERS	O
CONTROL AND HANDLING OF WELDING CONSUMABLES	
• PACKAGING	O
• EXPOSURE CONTROL	O
NO WELDING OVER CRACKED TACK WELDS	O
ENVIRONMENTAL CONDITIONS	
• WIND SPEED AND DIRECTION	O
• PRECIPITATION AND TEMPERATURE	O
WPS FOLLOWED	
• SETTING ON WELDING EQUIPMENT	
• TRAVEL SPEED	
• SHIELDED GAS TYPE AND FLOW RATE	
• PREHEAT APPLIED	
• INTENDED TEMPERATURE MAINTAINED (MIN/MAX)	
• PROPER POSITION (F, V, H, CH)	
WELDING TECHNIQUES	
• INTERPASS AND FINAL CLEANING	
• EACH PASS WITHIN PROFILE LIMITATIONS	
• EACH PASS MEETS QUALITY REQUIREMENTS	O

TABLE 5

INSPECTION TASKS AFTER WELDING (ADAPTION OF AISC 360-16 TABLE C-N5.4-3)	
INSPECTION TASKS AFTER WELDING	QA
WELDS CLEARED	O
SIZE, LENGTH AND LOCATION OF WELDS	P
WELDS MEET VISUAL ACCEPTANCE CRITERIA	
• CRACK PROHIBITION	
• WELD/BASE-METAL FUSION	
• CRACKS IN THE WELD	
• WELD PROFILES	P
• WELD SIZE	
• UNDERCUT	
• POROSITY	
ARC STRIKES	P
K-AREA*1	P
BACKING REMOVED AND WELDS TABS REMOVED (IF REQUIRED)	P
REPAIR ACTIVITIES	P
DOCUMENT ACCEPTANCE OR REJECTION OF WELDED JOINT OR MEMBER	P

*1 WHEN WELDING OF DOUBLE PLATES, CONTINUITY PLATES OR STIFFENERS HAS BEEN PERFORMED IN THE K-AREA, VISUALLY INSPECT THE WEB K-AREA FOR CRACKS WITHIN 3" OF THE WELD.

TABLE 6

INSPECTION TASKS PRIOR TO BOLTING OF STRUCTURAL STEEL (ADAPTION OF AISC 360-16 TABLE C-N5.6-1)	
INSPECTION TASKS PRIOR TO BOLTING	QA
MANUFACTURER'S CERTIFICATIONS AVAILABLE FOR FASTENER MATERIALS	P
FASTENERS MARKED IN ACCORDANCE WITH ASTM REQUIREMENTS	O
PROPER FASTENERS SELECTED FOR THE JOINT DETAIL (GRADE, TYPE, BOLT LENGTH IF THREADS ARE TO BE EXCLUDED FROM SHEAR PLANE)	O
PROPER BOLTING PROCEDURE SELECTED FOR JOINT DETAIL	O
CONNECTING ELEMENTS, INCLUDING THE APPROPRIATE FACING SURFACE CONDITION AND HOLE PREPARATION, IF SPECIFIED, MEET APPLICABLE REQUIREMENTS	O
PRE-INSTALLATION VERIFICATION TESTING BY INSTALLATION PERSONNEL OBSERVED AND DOCUMENTED FOR FASTENER ASSEMBLIES AND METHODS USED	O
PROPER STORAGE PROVIDED FOR BOLTS, NUTS, WASHERS AND OTHER FASTENER COMPONENTS	O

TABLE 7

INSPECTION TASKS DURING BOLTING OF STRUCTURAL STEEL (ADAPTION OF AISC 360-16 TABLE C-N5.6-2)	
INSPECTION TASKS DURING BOLTING	QA
JOINT BROUGHT TO THE SNUG-TIGHT CONDITION PRIOR TO THE PRETENSIONING OPERATION	O
FASTENER ASSEMBLIES, OF SUITABLE CONDITION, PLACED IN ALL HOLES AND WASHERS (IF REQUIRED) ARE POSITIONED AS REQUIRED	O
FASTENER COMPONENT NOT TURNED BY THE WRENCH PREVENTED FROM ROTATING	O
FASTENERS ARE PRETENSIONED IN ACCORDANCE WITH THE RSCC SPECIFICATION, PROGRESSING SYSTEMATICALLY FROM THE MOST RIGID POINT TOWARD THE FREE EDGES	O

TABLE 8

INSPECTION TASKS AFTER BOLTING OF STRUCTURAL STEEL (ADAPTION OF AISC 360-16 TABLE C-N5.6-3)	
INSPECTION TASKS AFTER BOLTING	QA
DOCUMENT ACCEPTANCE OR REJECTION OF BOLTED CONNECTIONS	P

TABLE 9

INSPECTION OF STEEL ELEMENTS OF COMPOSITE CONSTRUCTION PRIOR TO CONCRETE PLACEMENT	
INSPECTION OF STEEL ELEMENTS OF COMPOSITE CONSTRUCTION PRIOR TO CONCRETE PLACEMENT	QA
PLACEMENT AND INSTALLATION OF STEEL DECK	P
PLACEMENT AND INSTALLATION OF STEEL HEADED STUD ANCHORS	P
DOCUMENT ACCEPTANCE OR REJECTION OF STEEL ELEMENTS	P

NOTES:

1. "CONTINUOUS SPECIAL INSPECTION" INDICATES SPECIAL INSPECTION BY THE SPECIAL INSPECTOR WHO IS PRESENT WHEN AND WHERE THE WORK TO BE INSPECTED IS BEING PERFORMED.
2. "PERIODIC SPECIAL INSPECTION" INDICATES SPECIAL INSPECTION BY THE SPECIAL INSPECTOR WHO IS PRESENT WHEN AND WHERE THE WORK TO BE INSPECTED HAS BEEN OR IS BEING PERFORMED.
3. "P" INDICATES TO PERFORM THESE TASKS FOR EACH WELDED JOINT OR MEMBER, FOR EACH BOLTED CONNECTION, AND EACH STEEL ELEMENT.
4. "O" INDICATES TO OBSERVE THESE ITEMS ON A RANDOM BASIS. OPERATIONS NEED NOT BE DELAYED PENDING THESE INSPECTIONS.
5. "QA" INDICATES QUALITY ASSURANCE AS SPECIFIED IN CHAPTER N OF AISC 360-16.

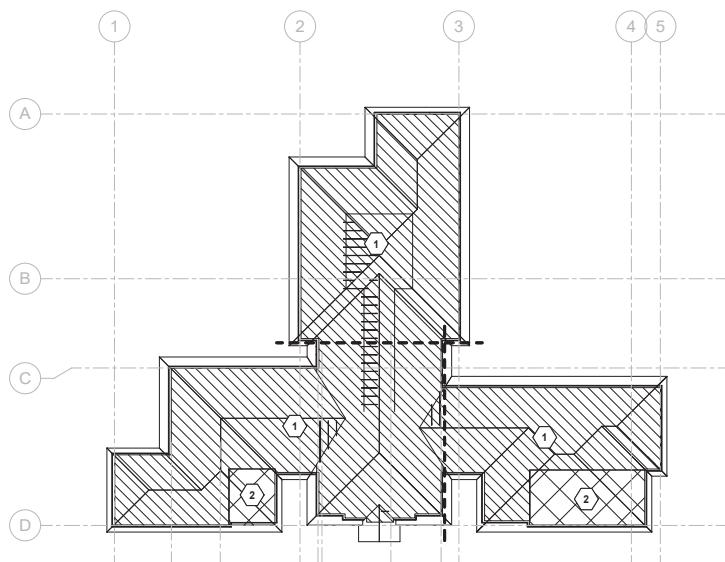
TABLE 10

LIGHT GAUGE STEEL CONSTRUCTION AND CONNECTIONS (ADAPTION OF 2021 IBC - 1705.2.2, 1705.2.4, 1705.12.2)	
INSPECTION TASKS DURING BOLTING	QA
TRUSSES SPANNING 60 FT OR GREATER WHERE APPLICABLE • VERIFY THAT TEMPORARY AND PERMANENT TRUSS RESTRAINT/BRACING IS INSTALLED IN ACCORDANCE WITH APPROVED TRUSS SUBMITTAL PACKAGE	P
WELDED CONNECTIONS (SEISMIC AND/OR WIND RESISTING SYSTEM) • VISUALLY INSPECT ALL WELDS COMPOSING PART OF THE MAIN WIND/SEISMIC FORCE RESISTING SYSTEM, INCLUDING SHEAR WALLS, BRACES, COLLECTORS (DRAG STRUTS), AND HOLD-DOWNS	P

TABLE 11

REQUIRED MINIMUM SPECIAL INSPECTION OF MASONRY (ADAPTION OF 2021 IBC AND TMS 402/602-16)			
INSPECTION TASK	FREQUENCY (H)		
	LEVEL 1	LEVEL 2	LEVEL 3
1. AS MASONRY CONSTRUCTION BEGINS, VERIFY THAT THE FOLLOWING ARE IN COMPLIANCE:			
a. PROPORTIONS OF SITE-PREPARED MORTAR	NR	P	P
b. GRADE, TYPE AND SIZE OF PRESTRESSING TENDONS AND ANCHORAGES	NR	P	P
c. GRADE, TYPE AND SIZE OF REINFORCEMENT, CONNECTORS, ANCHOR BOLTS	NR	P	P
d. PRESTRESSING TECHNIQUE	NR	P	P
e. SAMPLE PANEL CONSTRUCTION	NR	P	C
2. PRIOR TO GROUTING, VERIFY THAT THE FOLLOWING ARE IN COMPLIANCE:			
a. GROUT SPACE	NR	P	C
b. PLACEMENT OF PRESTRESSING TENDONS AND ANCHORAGES	NR	P	P
c. PLACEMENT OF REINFORCEMENT, CONNECTORS, AND ANCHOR BOLTS	NR	P	C
d. PROPORTIONS OF SITE-PREPARED GROUT AND PRESTRESSING GROUT OF BONDED TENDONS	NR	P	P
3. VERIFY CYCLICAL LOAD OF THE FOLLOWING DURING CONSTRUCTION:			
a. MATERIALS AND PROCEDURES WITH THE APPROVED SUBMITTALS	NR	P	P
b. PLACEMENT OF MASONRY UNITS AND MORTAR JOINT CONSTRUCTION	NR	P	P
c. SIZE AND LOCATION OF STRUCTURAL MEMBERS	NR	P	P
d. TYPE, SIZE, AND LOCATION OF ANCHORS, INCLUDING OTHER DETAILS OF ANCHORAGE OF MASONRY TO STRUCTURAL MEMBERS, FRAMES OR OTHER CONSTRUCTION	NR	P	C
e. WELDING OF REINFORCEMENT	NR	C	C
f. PREPARATION, CONSTRUCTION, AND PRESTRESSING OF MASONRY DURING COLD WEATHER (TEMP BELOW 40°) OR HOT WEATHER (TEMP ABOVE 90°)	NR	P	P
g. APPLICATION AND MEASUREMENT OF PRESTRESSING FORCE	NR	C	C
h. PLACEMENT OF GROUT AND PRESTRESSING GROUT FOR BONDED TENDONS IN COMPLIANCE	NR	C	C
4. OBSERVE PREPARATION OF GROUT SPECIMENS, MORTAR SPECIMENS, AND/OR PRISMS.	NR	P	C

a. FREQUENCY REFERS TO THE FREQUENCY OF INSPECTION.
NR = NOT REQUIRED, P = PERIODIC, C = CONTINUOUS
PROJECT IS LEVEL 2.

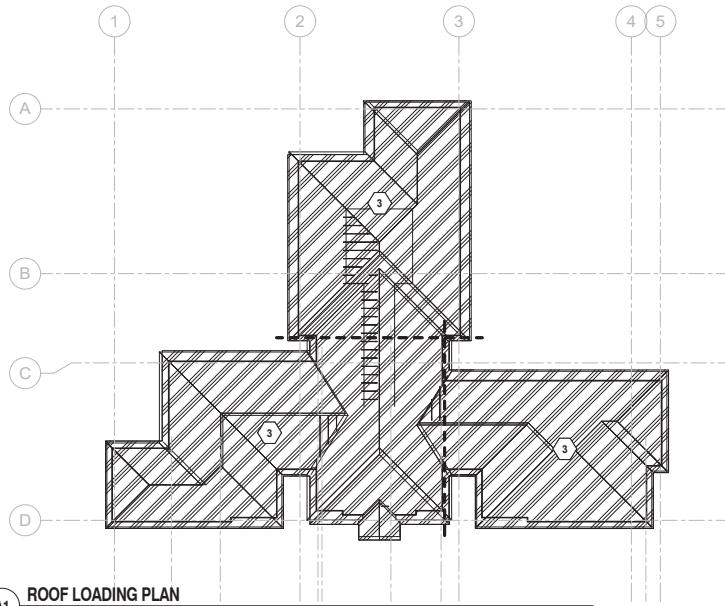
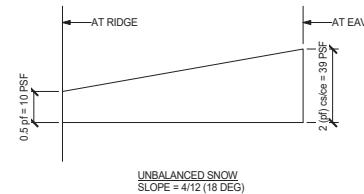

1

2

3

4

5

NOTES:

1. R - REDUCIBLE LIVE LOAD; NR - NON-REDUCIBLE LIVE LOAD; S - STORAGE LOAD
2. SEE COMPONENT & CLADDING LOADS ON SHEET S001 FOR ROOF WIND UPLIFT DESIGN PRESSURES.
3. ADDITIONAL ROOF LIGHT-GAUGE TRUSS POINT LOADS - 2x250 LBS APPLIED AT TWO SINGLE POINTS OF TOP OR BOTTOM CHORD OF TRUSS.
4. USE TOTAL DEAD LOAD OF 15 PSF TO CALCULATE THE NET WIND UPLIFT FOR THE DESIGN OF ROOF LIGHT-GAUGE TRUSS AND COMPONENT USING THE WIND PRESSURES AS SHOWN ON SHEET S002.
5. USE TOTAL DEAD LOAD OF 15 PSF TO CALCULATE THE NET WIND UPLIFT FOR THE DESIGN OF ROOF LIGHT-GAUGE TRUSS AND COMPONENT USING THE WIND PRESSURES AS SHOWN ON SHEET S003.
6. PER UFC 3-301 SECTION 607.4.4 FALL ARREST ANCHORAGES MUST BE CAPABLE OF SUPPORTING AT LEAST 5,000 POUNDS PER PERSON ATTACHED OR BE DESIGNED, INSTALLED AND USED AS PART OF A COMPLETE FALL ARREST SYSTEM. SEE ANSI/ASSE Z356.6 FOR ADDITIONAL REQUIREMENTS AND DESIGN GUIDANCE (NOTE: THE 1.6 LOAD FACTOR USED IN Z356.6 FOR ACTIVE FORCES MUST BE REPLACED BY 2.0).

DESIGN GRAVITY LOADS

MARK	LIVE LOAD (LL)		SUPERIMPOSED DEAD LOAD (SDL)	
	DESCRIPTION	LOAD (psf)	DESCRIPTION	LOAD (psf)
1	PUBLIC USE AREAS	100	N/A	-
2	MECHANICAL	125	N/A	-
3	ROOF MIN SNOW UNBALANCED SNOW (PS = 19.3 psf)	25	TOP CHORD	15
		22	BOTTOM CHORD	10

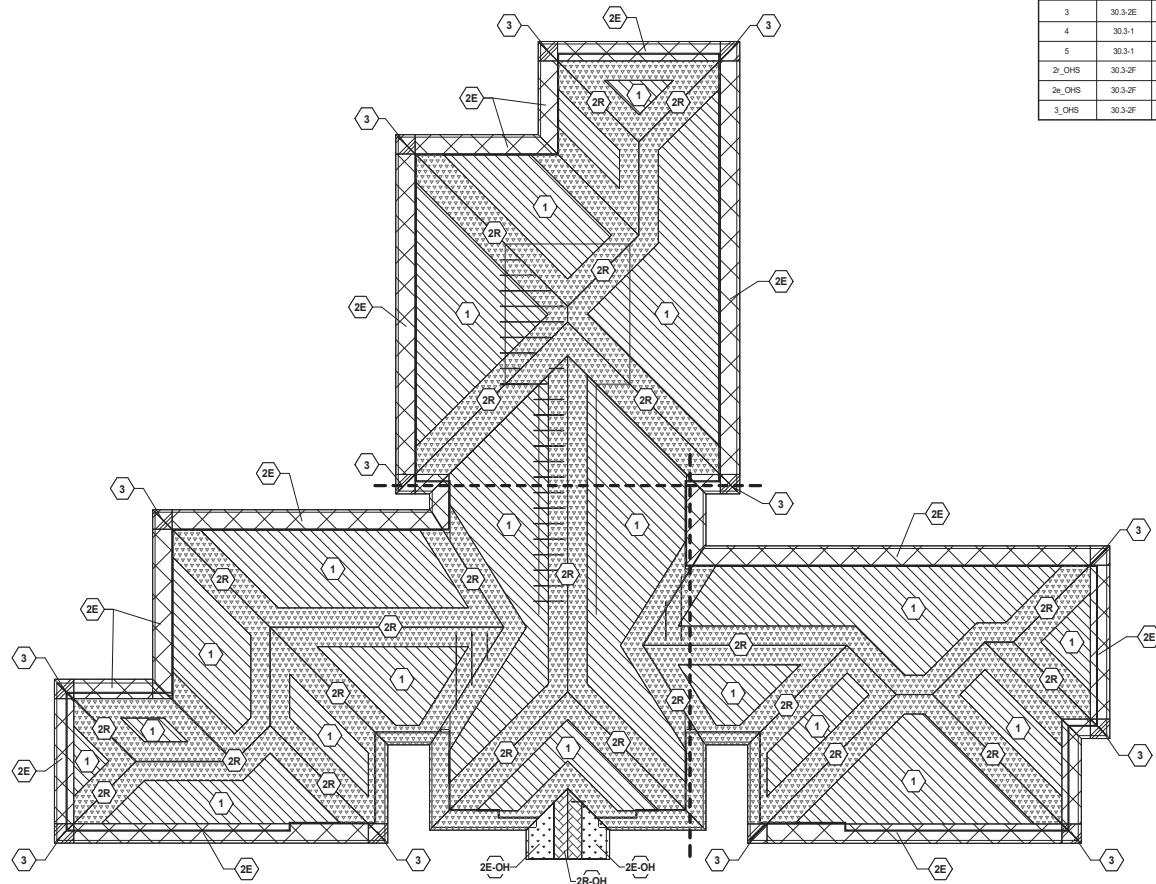
1

2

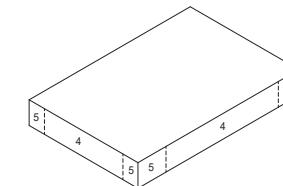
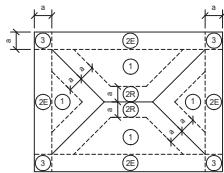
3

4

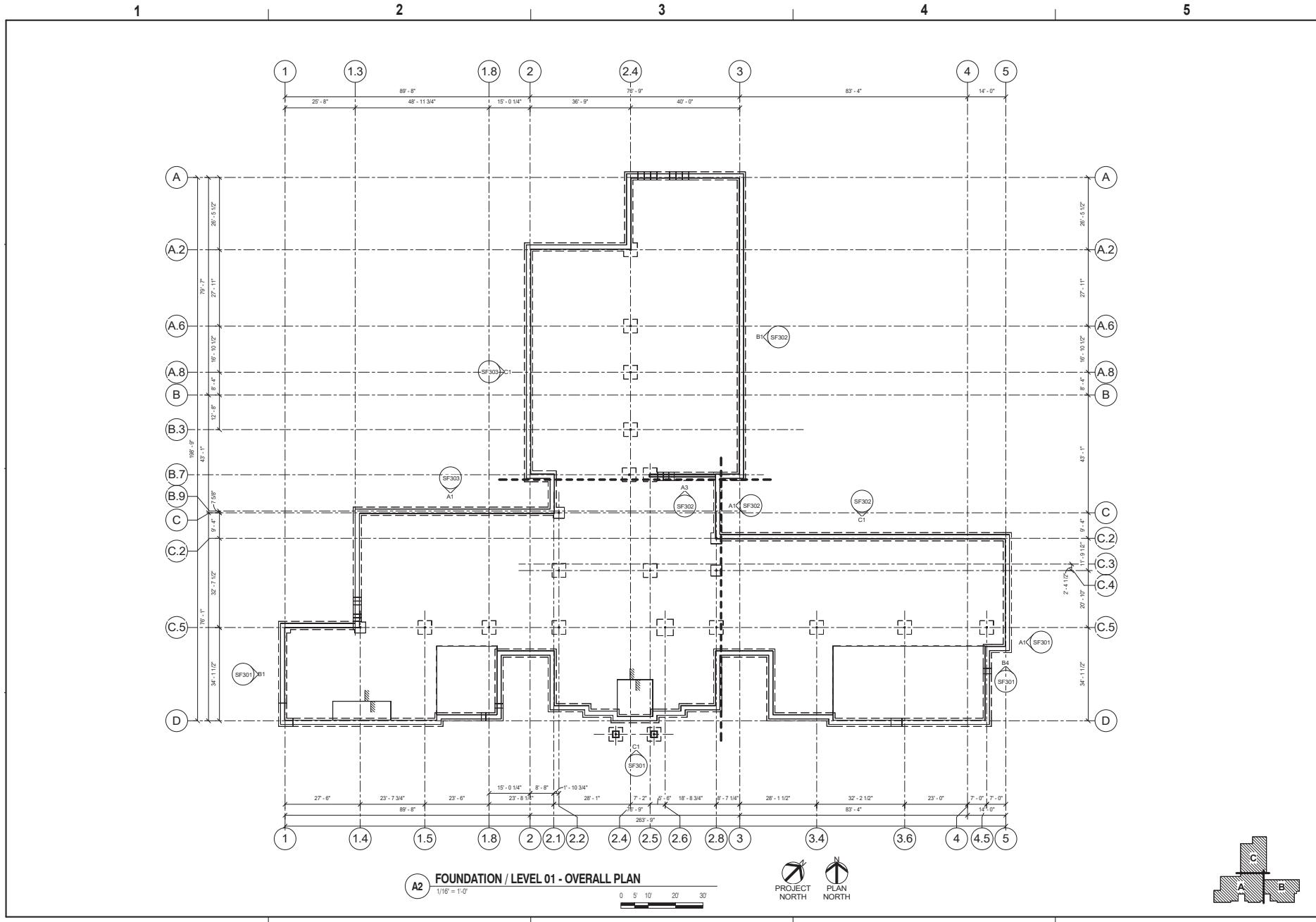
5

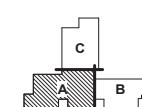
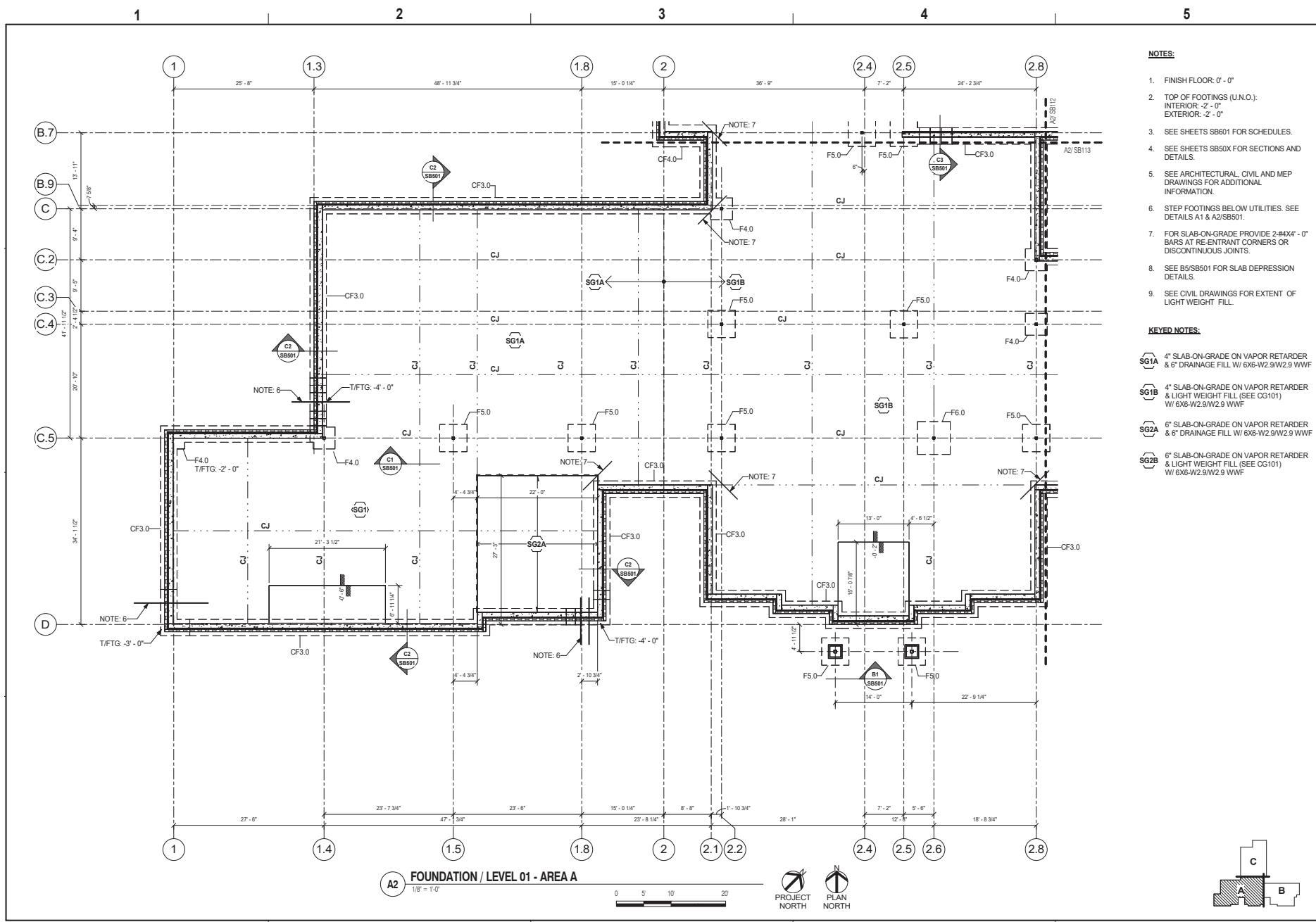

1

2



3

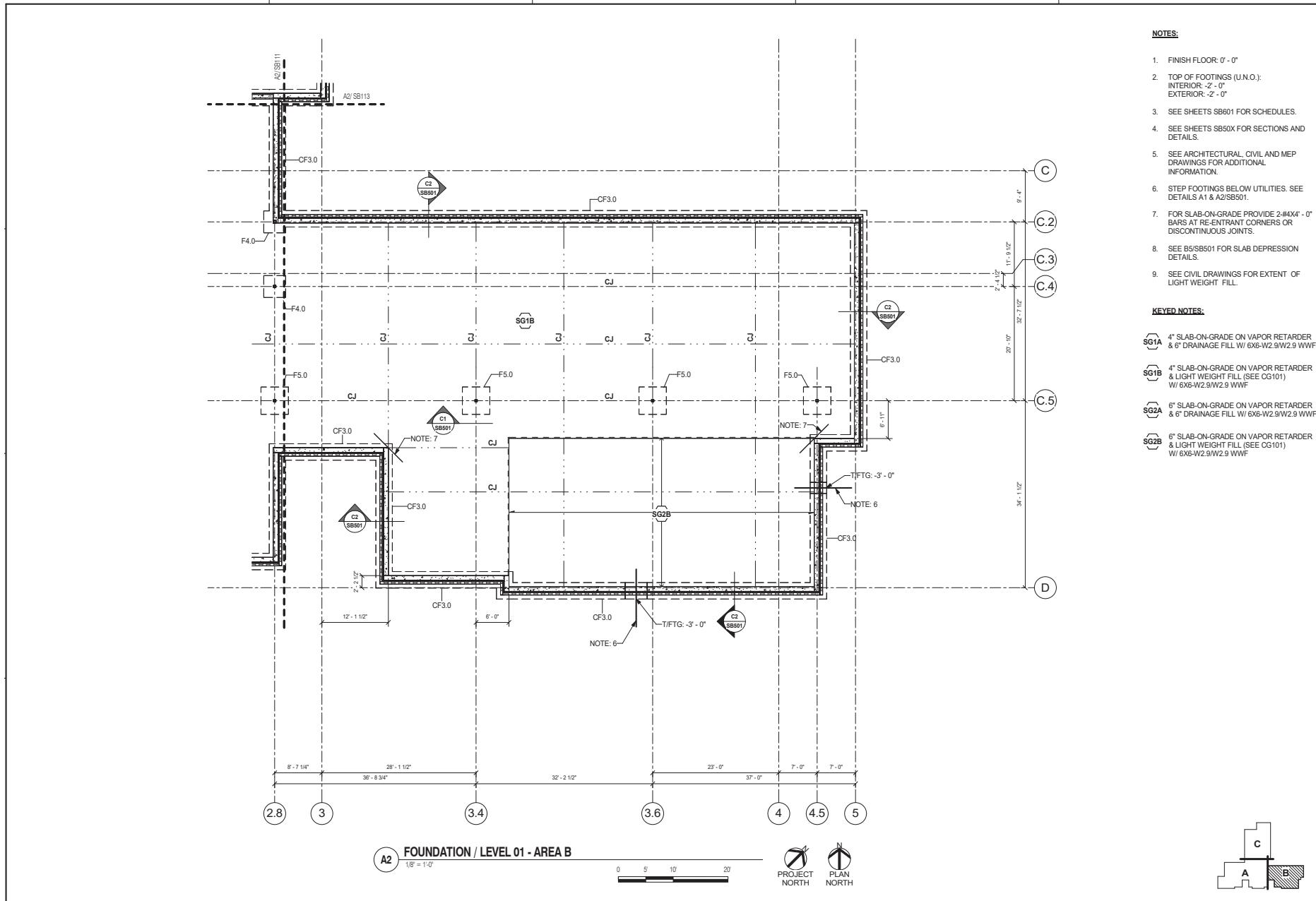
4


5

ZONE	FIGURE	POS A = 10 ft ² PSF	NEG A < 10 ft ² PSF	POS A = 20 ft ² PSF	NEG A = 20 ft ² PSF	POS A = 50 ft ² PSF	NEG A = 50 ft ² PSF	POS A = 100 ft ² PSF	NEG A = 100 ft ² PSF	POS A = 200 ft ² PSF	NEG A = 200 ft ² PSF	POS A = 500 ft ² PSF	NEG A = 500 ft ² PSF
1	30.3-2E	24.89	-41.86	21.48	-41.86	16.98	-37.03	16.00	-33.11	16.00	-33.11	16.00	-33.11
2e	30.3-2E	24.89	-56.00	21.48	-51.42	16.98	-45.37	16.00	-40.46	16.00	-35.92	16.00	-35.92
2r	30.3-2E	24.89	-72.97	21.48	-65.78	16.98	-56.23	16.00	-48.67	16.00	-41.53	16.00	-41.53
3	30.3-2E	24.89	-56.00	21.48	-51.42	16.98	-45.37	16.00	-40.46	16.00	-35.92	16.00	-35.92
4	30.3-1	33.38	-36.20	31.87	-34.70	29.89	-32.71	28.16	-30.98	26.66	-29.47	24.69	-27.50
5	30.3-1	33.38	-44.69	31.87	-41.68	29.89	-37.71	28.16	-34.42	26.66	-31.44	24.69	-27.50
2r_OHS	30.3-2F	16.00	-87.12	16.00	-83.19	16.00	-78.00	16.00	-73.48	16.00	-68.59	16.00	-68.59
2e_OHS	30.3-2F	16.00	-70.15	16.00	-68.84	16.00	-67.11	16.00	-65.27	16.00	-63.97	16.00	-63.97
3_OHS	30.3-2F	16.00	-87.12	16.00	-78.61	16.00	-67.36	16.00	-58.39	16.00	-49.95	16.00	-49.95

1. GROSS WIND PRESSURES SHOWN ABOVE ARE PREDICATED ON ULTIMATE WIND SPEED.
2. EDGE ZONES: 'a' = 8'-0"
3. WIND PRESSURES SHOWN SHALL BE USED IN CONJUNCTION WITH LOAD COMBINATIONS SPECIFIED IN SECTIONS 2.3 AND 2.4 OF ASCE 7-16.
4. POSITIVE WIND PRESSURES REPRESENT WIND PRESSURES ACTING TOWARDS THE COMPONENT AND CLADDING SURFACES.
5. NEGATIVE WIND PRESSURES REPRESENT WIND PRESSURES ACTING AWAY FROM THE COMPONENT AND CLADDING SURFACES.


1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

(2) 38'-9" (2.4) 40'-0" (3)

NOTE: 6

T/F: -7'-0"

CF3.0 CF3.0 CJ CJ

F5.0

38'-9"

40'-0"

28'-4 1/2"

NOTES:

1. FINISH FLOOR: 0' - 0"
2. TOP OF FOOTINGS (U.N.O.):
INTERIOR: -2' - 0"
EXTERIOR: -2' - 0"
3. SEE SHEETS SB501 FOR SCHEDULES.
4. SEE SHEETS SB50X FOR SECTIONS AND DETAILS.
5. SEE ARCHITECTURAL, CIVIL AND MEP DRAWINGS FOR ADDITIONAL INFORMATION.
6. STEP FOOTINGS BELOW UTILITIES. SEE DETAILS A1 & A2/SB501.
7. FOR SLAB-ON-GRADE PROVIDE 2#4X4' - 0" BARS AT RE-ENTRANT CORNERS OR DISCONTINUOUS JOINTS.
8. SEE B5/SB501 FOR SLAB DEPRESSION DETAILS.
9. SEE CIVIL DRAWINGS FOR EXTENT OF LIGHT WEIGHT FILL.

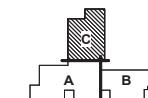
KEYED NOTES:

SG1A 4" SLAB-ON-GRADE ON VAPOR RETARDER & 6" DRAINAGE FILL W/ 6X6-W2.9/W2.9 WWF

SG1B 4" SLAB-ON-GRADE ON VAPOR RETARDER & LIGHT WEIGHT FILL (SEE CG101) W/ 6X6-W2.9/W2.9 WWF

SG2A 6" SLAB-ON-GRADE ON VAPOR RETARDER & 6" DRAINAGE FILL W/ 6X6-W2.9/W2.9 WWF

SG2B 6" SLAB-ON-GRADE ON VAPOR RETARDER & LIGHT WEIGHT FILL (SEE CG101) W/ 6X6-W2.9/W2.9 WWF

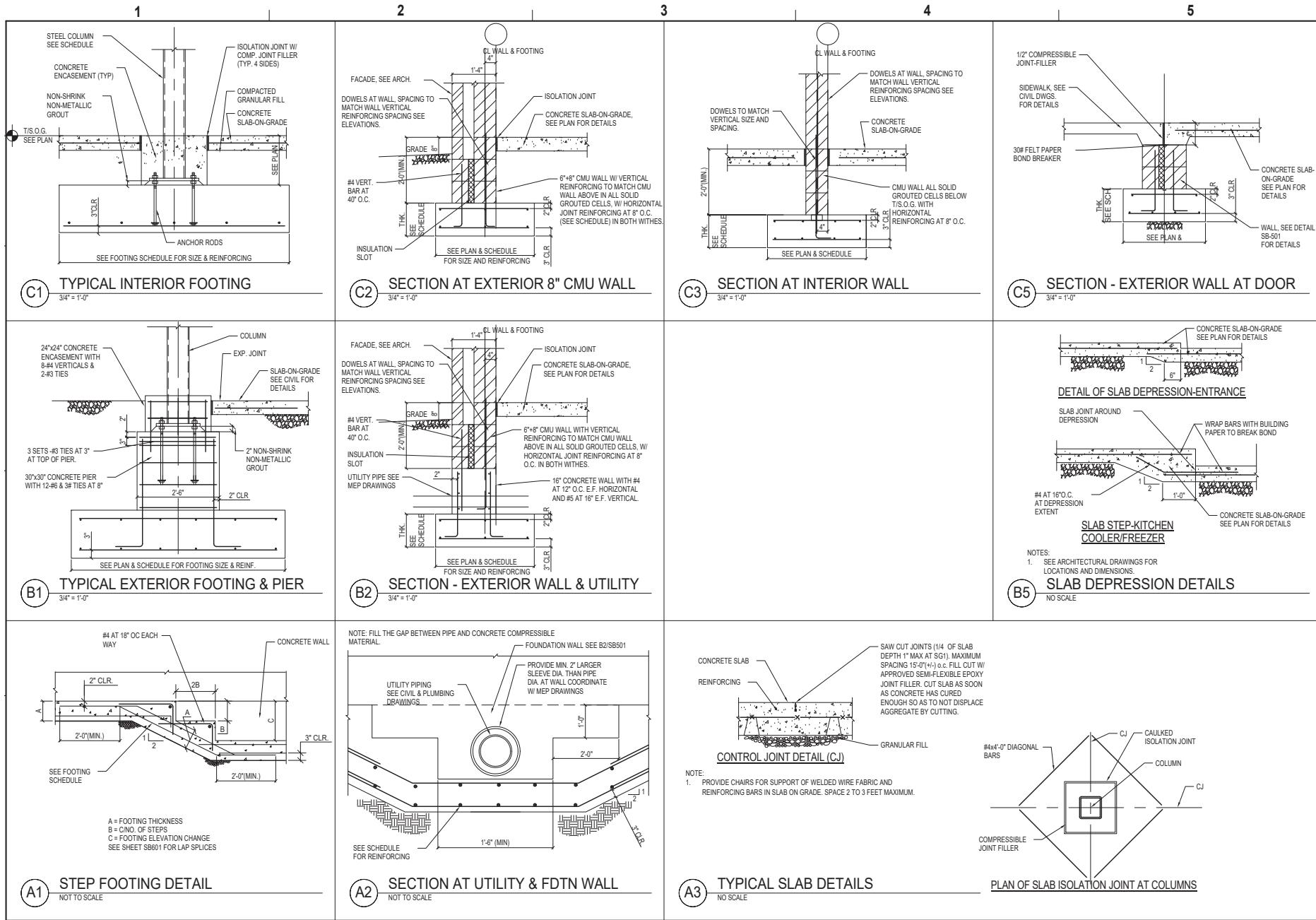

FOUNDATION / LEVEL 01 - AREA C

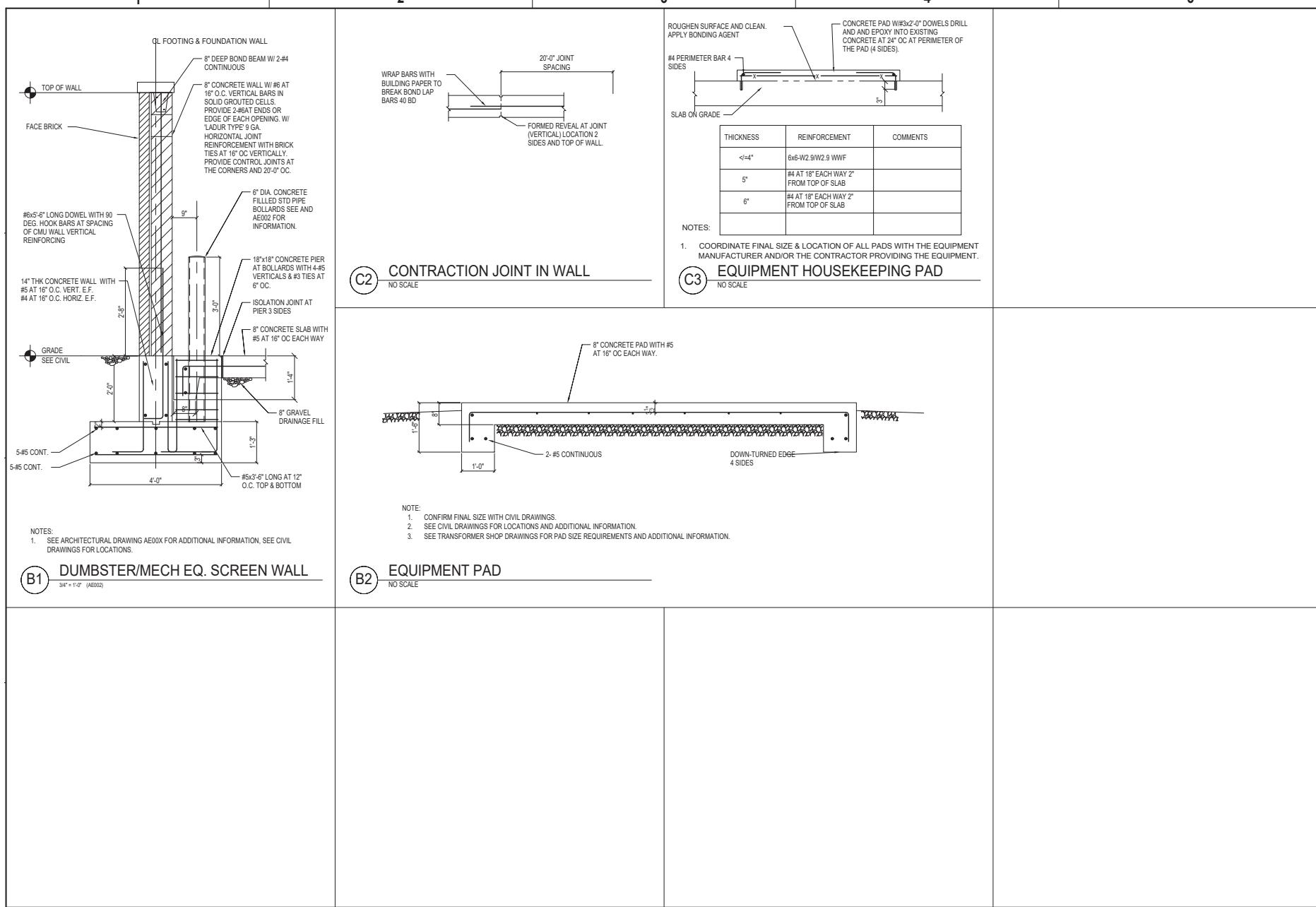
A2 1/8" = 1'-0"

0 5 10 20

PROJECT
NORTH

PLAN
NORTH


1


2

3

4

5

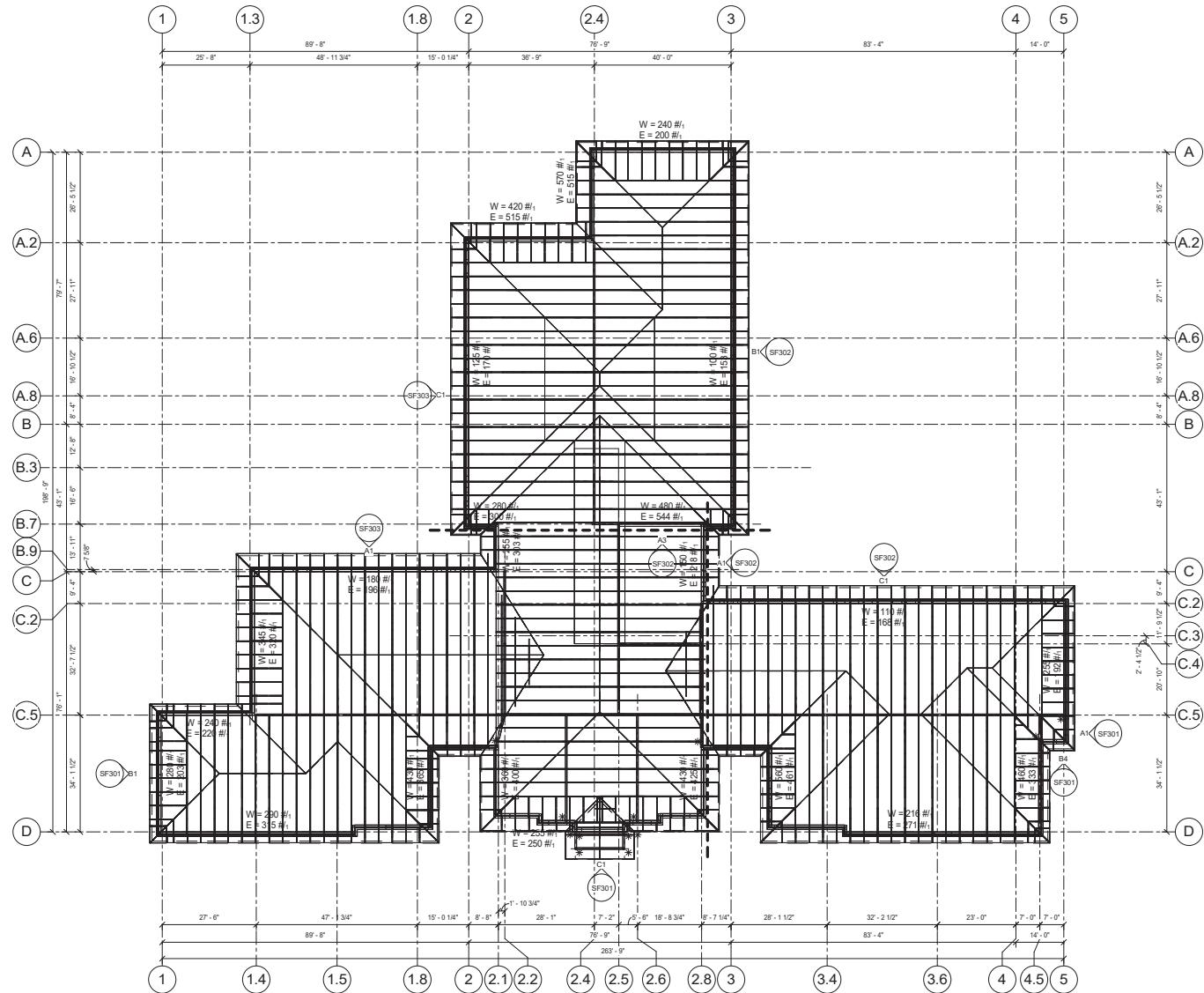
SPREAD FOOTING SCHEDULE				
ALLOWABLE BEARING CAPACITY = 3,000 PSF				
MARK	SIZE	BOTTOM REINFORCING	TOP REINFORCING	REMARKS
F4.0	4'-0" x 4'-0" x 1'-6" THK	8-#4 EA WAY		
F5.0	5'-0" x 5'-0" x 1'-6" THK	8-#5 EA WAY	3-#5 EA WAY	
F6.0	6'-0" x 6'-0" x 1'-6" THK	8-#6 EA WAY	3-#6 EA WAY	

CONCRETE REINFORCING BAR DEVELOPMENT AND SPLICE LENGTH SCHEDULE (fc = 4,000 PSF)					
BAR SIZE	OTHER BARS	TOP/HORIZ BARS	HOOKED BARS	Ld	SPICE
#3	15	19	19	25	6
#4	19	25	25	33	7
#5	24	31	31	41	9
#6	29	37	37	49	10
#7	42	54	54	71	12
#8	47	62	62	81	14
#9	54	70	70	91	15

NOTES:

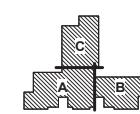
1. LENGTHS SHOWN IN THIS SCHEDULE SHALL BE USED UNLESS SPECIFICALLY NOTED OTHERWISE ON DRAWINGS.
2. LENGTHS SHOWN IN THIS SCHEDULE ARE BASED ON CLASS B TENSION LAP SPLICES FOR NORMAL WEIGHT CONCRETE STRENGTH AND GRADE 60 (Fy = 60,000 PSI) REINFORCING STEEL WITH CONCRETE COVER AND SPACING AS DEFINED IN CONCRETE SECTION OF GENERAL NOTES ON SHEET S-001 AND ACI 318.14 SECTION 12.
3. Ld = TENSION DEVELOPMENT / EMBEDMENT LENGTH FOR STRAIGHT BARS.
4. Ldh = TENSION DEVELOPMENT / EMBEDMENT LENGTH FOR HOOKED BARS.
5. LAP SPLICES SHALL BE WIRED IN CONTACT.
6. TOP BARS ARE HORIZONTAL BARS IN BEAMS, FOOTINGS, SLABS AND WALLS WHERE MORE THAN 12" OF FRESH CONCRETE IS CAST BELOW THE BAR.
7. ALL TABULATED VALUES ARE INCHES.

CONTINUOUS FOOTING SCHEDULE				
ALLOWABLE BEARING CAPACITY = 3,000 PSF				
MARK	SIZE	BOTTOM REINFORCING	TOP REINFORCING	REMARKS
CF2.0	2'-0" WIDE CONTINUOUS x 1'-0" THK	2-#5 CONTINUOUS	2-#5 CONTINUOUS	
CF2.5	2'-6" WIDE CONTINUOUS x 1'-0" THK	3-#5 CONTINUOUS	3-#5 CONTINUOUS	
CF3.0	3'-0" WIDE CONTINUOUS x 1'-0" THK	3-#5 CONTINUOUS #4x2'-6" AT 12"	3-#5 CONTINUOUS #4x2'-6" AT 24"	
CF4.0	4'-0" WIDE CONTINUOUS x 1'-3" THK	4-#5 CONTINUOUS #4x3'-6" AT 9"	4-#5 CONTINUOUS #4x3'-6" AT 9"	


1

2

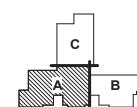
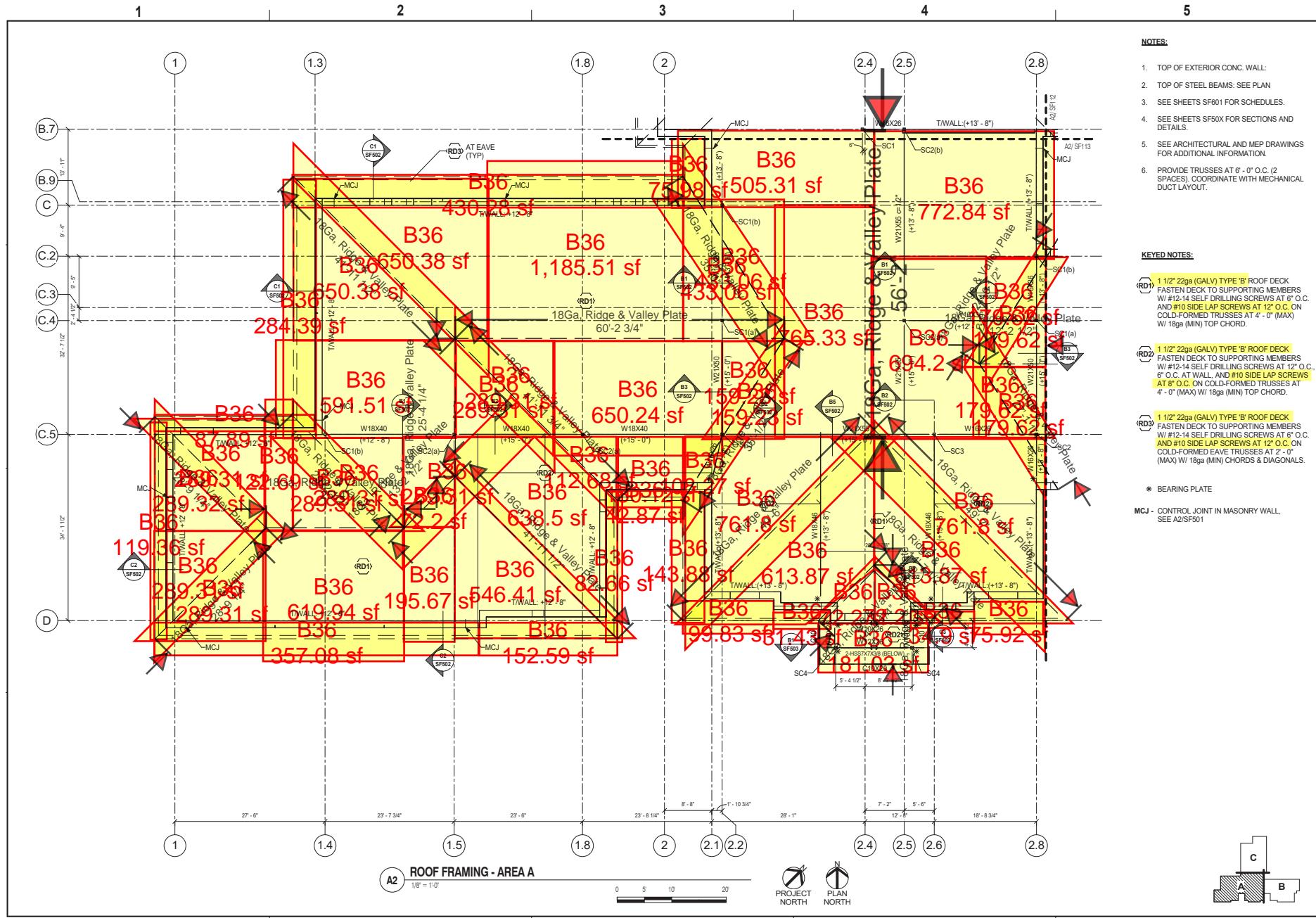
3


4

5

PROJECT
NORTH

PLAN
NORTH

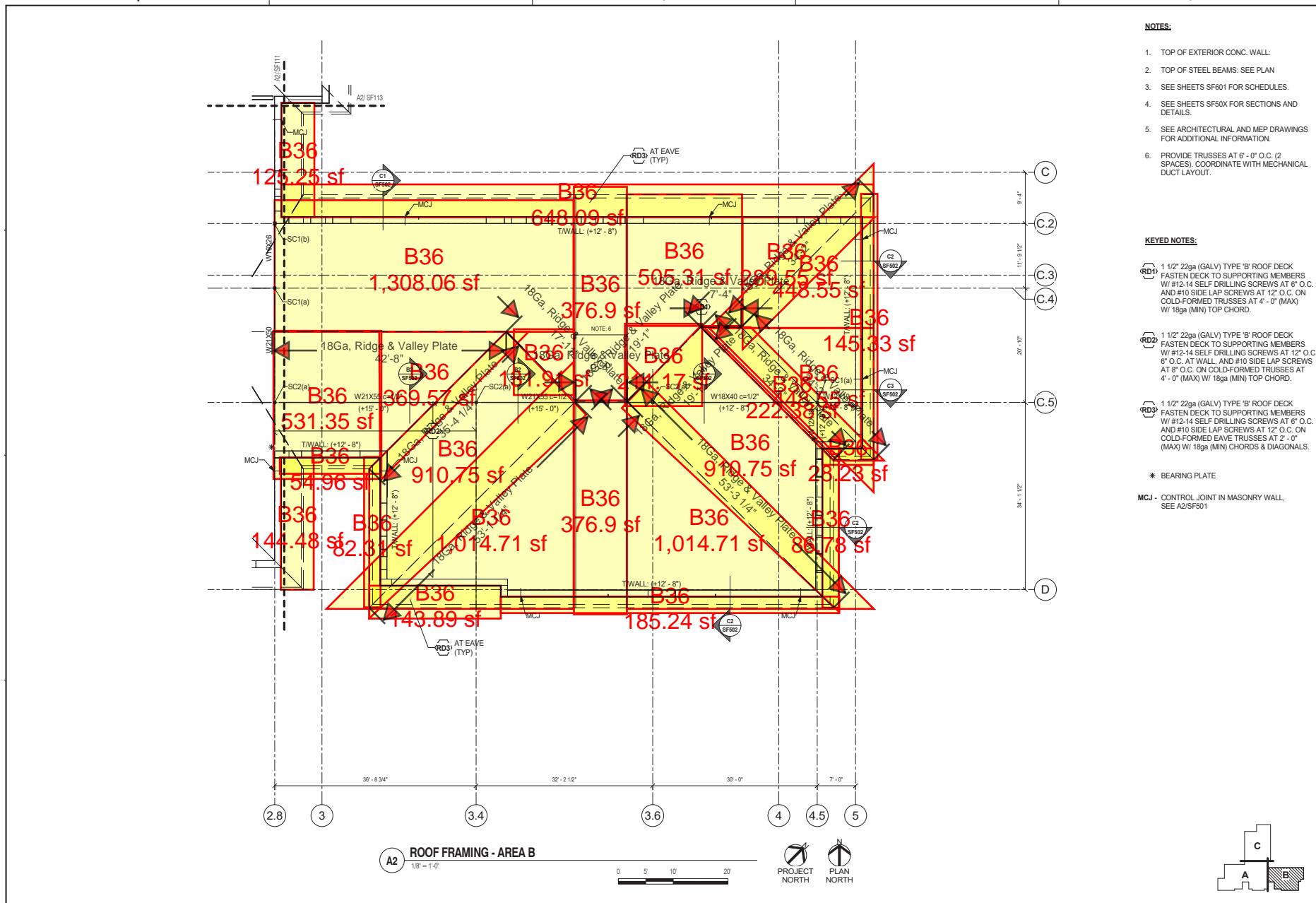


1

2

3

4

5


1

2

3

4

5


1

2

3

4

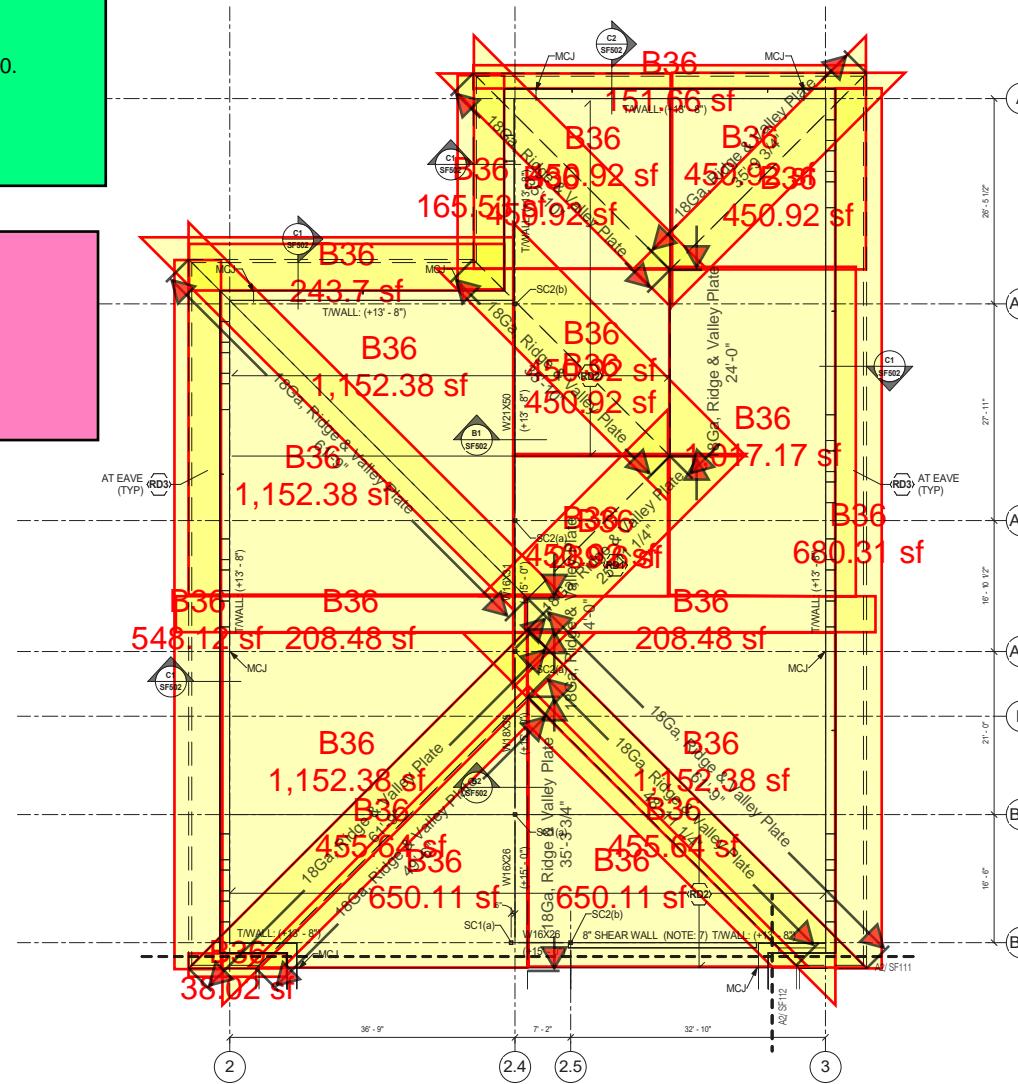
5

Deck V3 (ALL Page)

Description	Deck Type	Deck Gauge	Deck Finish	Lap or Waste	Deck SQ	No of Floors	Screw Pattern	Screw Total	Comments-Add'l Loads
Roof	B36	22	G60	2%	109.30	1 Floor	8" O/C	5,466	
Roof	B36	22	G60	2%	138.00	1 Floor	12" O/C	4,598	
Roof	B36	22	G60	2%	190.35	1 Floor	12" O/C	6,346	

Deck Accessories (ALL Page)

Label	Description	Total Length	Total Qtys	Comments-Add'l Loads
18Ga, Ridge & Valley Plate	Other Accessories	1,457.29	1,660.00	Linear Feet, REF. B1/SF503
18Ga, Ridge & Valley Plate	Other Accessories	56.16	60.00	Linear Feet


1 2 3 4 5

Califications:

of deck quoted with galvanized G60.
ID Deck section properties used.
nsider 4:12 slope for entire Roof.

clusions:

earch & evaluation reports.
Ga Truss.
3" Comp. deck.
Ga roof deck

NOTES:

- TOP OF EXTERIOR CONC. WALL:
- TOP OF STEEL BEAMS: SEE PLAN
- SEE SHEETS SF601 FOR SCHEDULES.
- SEE SHEETS SF50X FOR SECTIONS AND DETAILS.
- SEE ARCHITECTURAL AND MEP DRAWINGS FOR ADDITIONAL INFORMATION.
- PROVIDE TRUSSES AT 6' - 0" O.C. (2 SPACES), COORDINATE WITH MECHANICAL DUCT LAYOUT.
- PROVIDE LATERAL LOAD TRANSFER TRUSS FROM ROOF DECK DIAPHRAGM TO TOP OF CONCRETE SHEAR WALL.

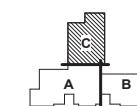
KEYED NOTES:

RD1 1 1/2" 22ga (GALV) TYPE 'B' ROOF DECK
FASTEN DECK TO SUPPORTING MEMBERS
W/ #12-14 SELF DRILLING SCREWS AT 6" O.C.
AND #10 SIDE LAP SCREWS AT 12" O.C. ON
COLD-FORMED TRUSSES AT 4' - 0" (MAX)
W/ 18ga (MIN) TOP CHORD.

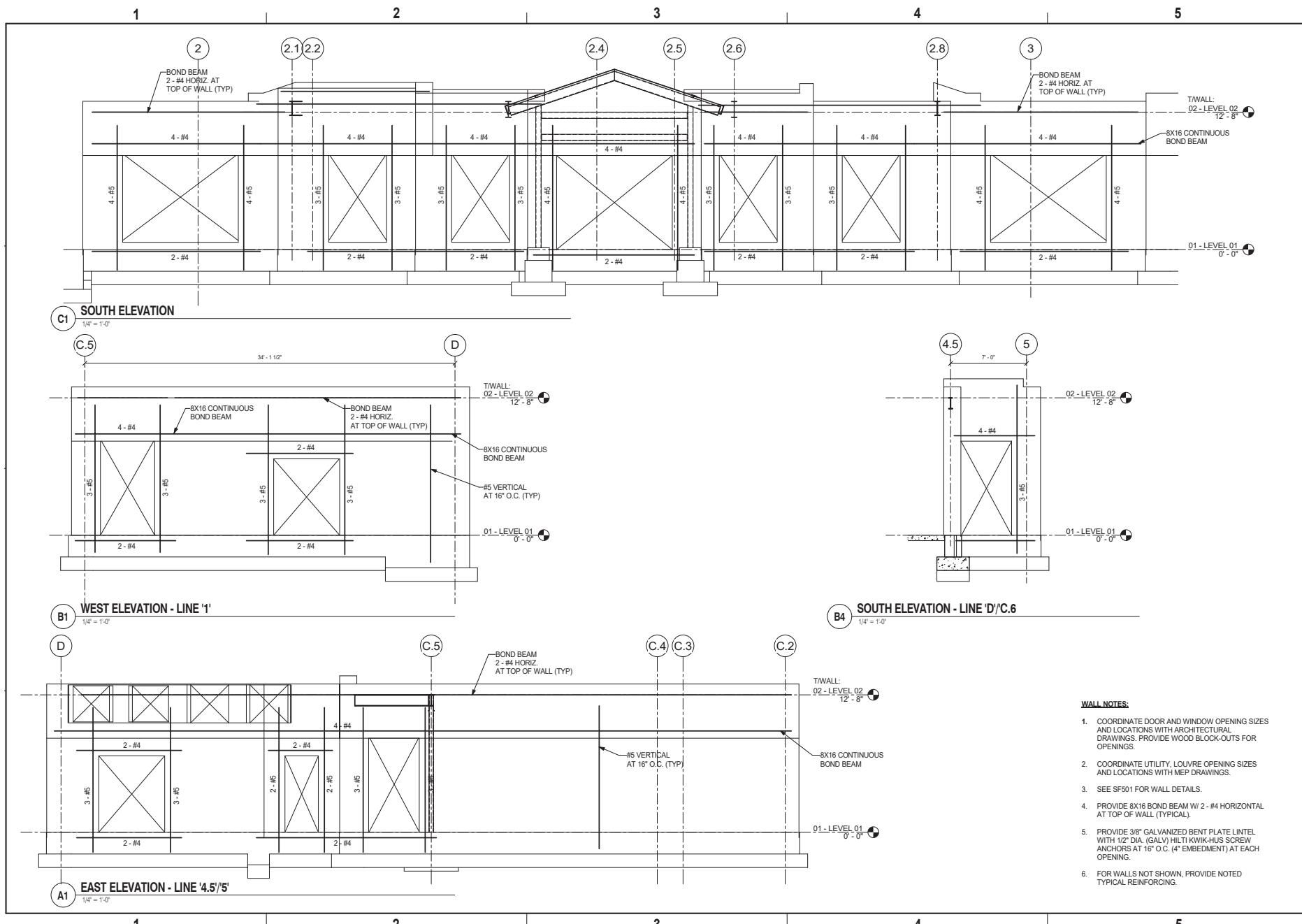
RD2 1 1/2" 22ga (GALV) TYPE 'B' ROOF DECK
FASTEN DECK TO SUPPORTING MEMBERS
W/ #12-14 SELF DRILLING SCREWS AT 12" O.C.
6" O.C. AT WALL, AND #10 SIDE LAP SCREWS
AT 8" O.C. ON COLD-FORMED EAVE TRUSSES AT
4' - 0" (MAX) W/ 18ga (MIN) TOP CHORD.

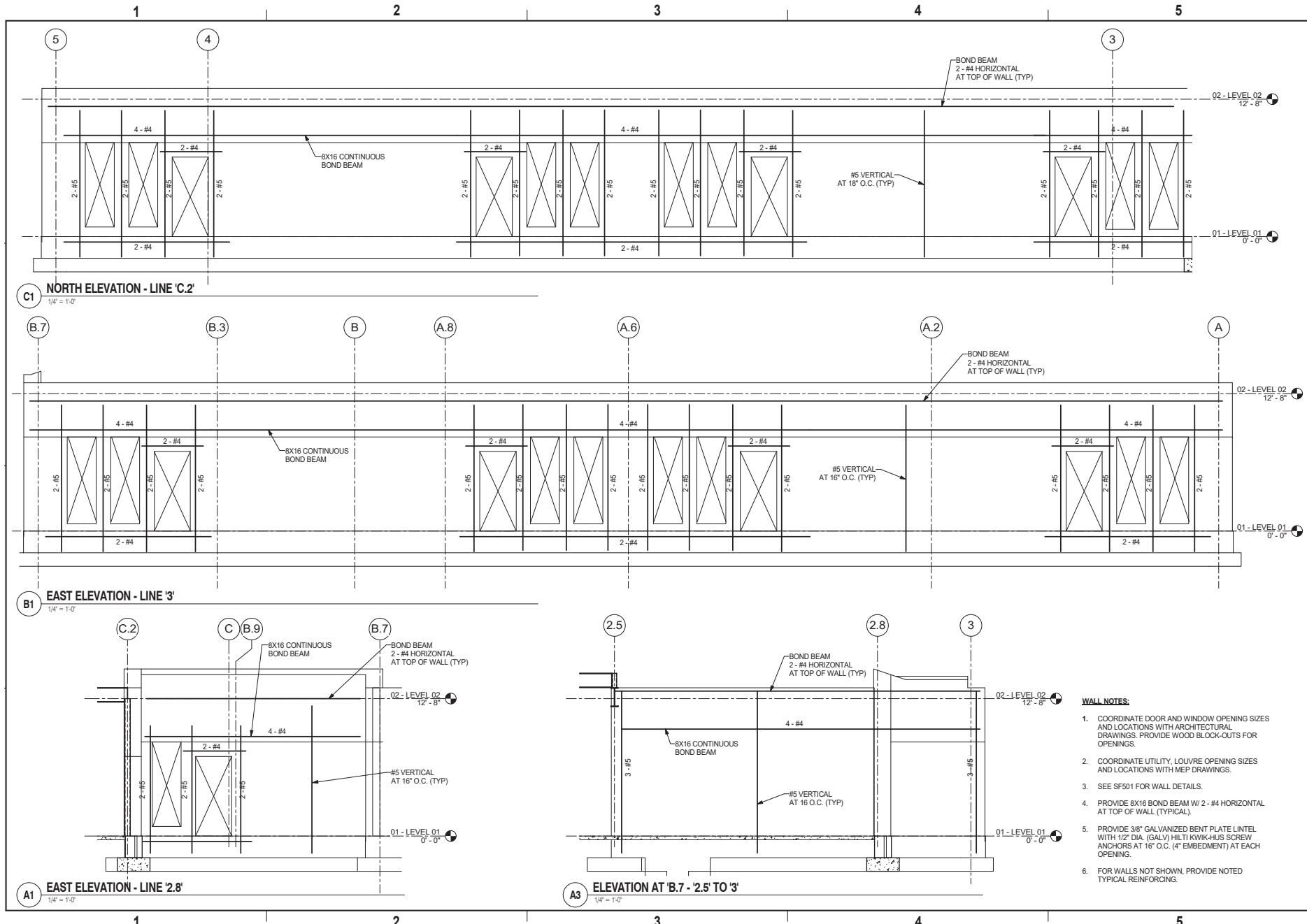
RD3 1 1/2" 22ga (GALV) TYPE 'B' ROOF DECK
FASTEN DECK TO SUPPORTING MEMBERS
W/ #12-14 SELF DRILLING SCREWS AT 6" O.C.
AND #10 SIDE LAP SCREWS AT 12" O.C. ON
COLD-FORMED EAVE TRUSSES AT 2' - 0"
(MAX) W/ 18ga (MIN) CHORDS & DIAGONALS.

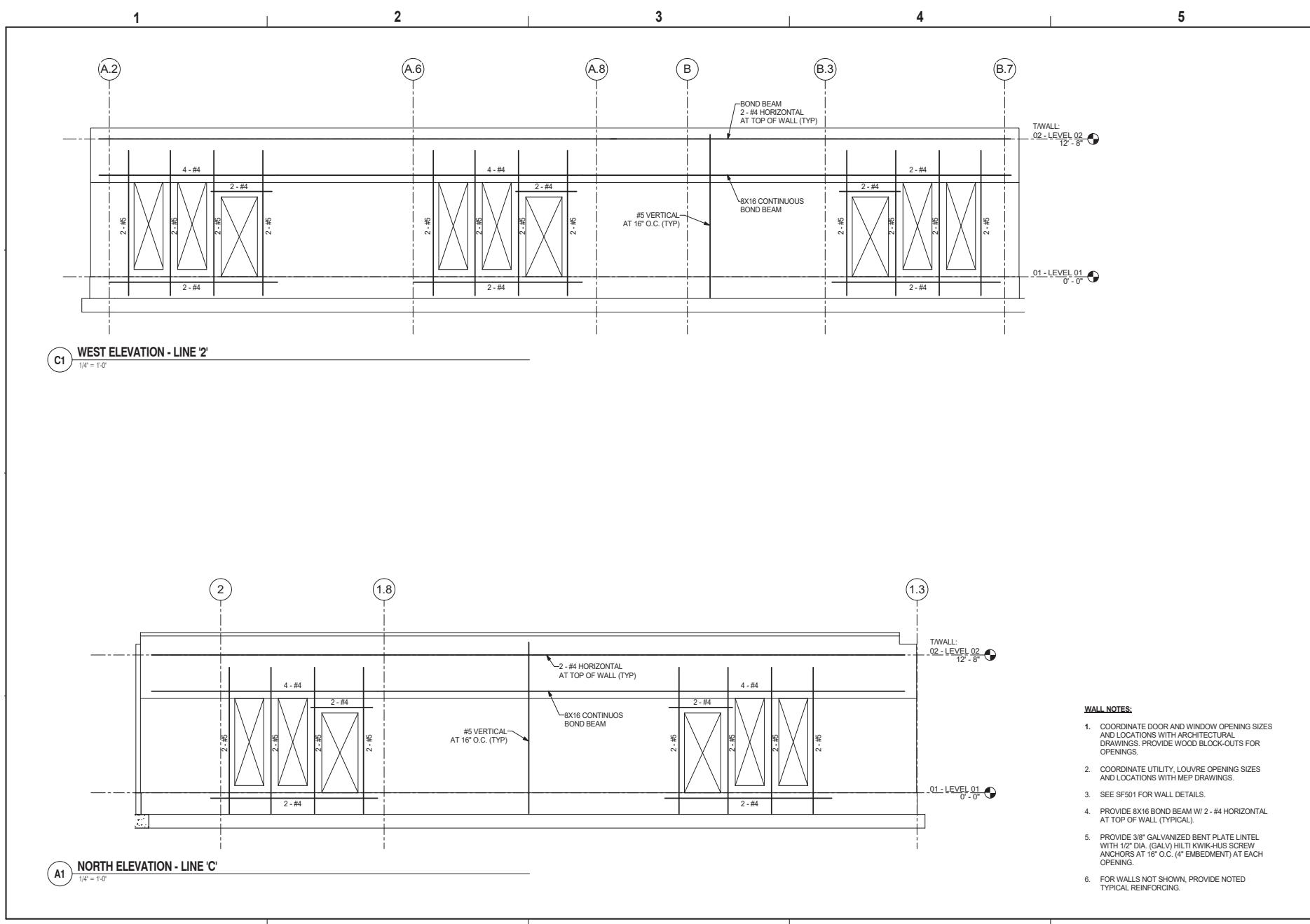
* BEARING PLATE

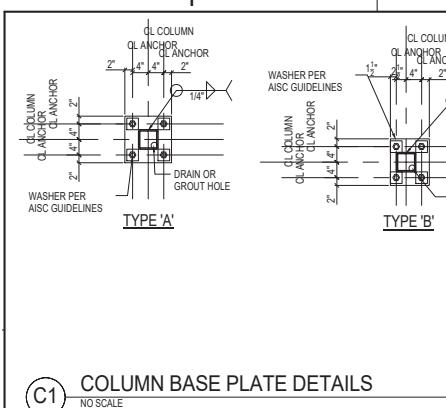

MCJ - CONTROL JOINT IN MASONRY WALL.
SEE A2/SF501

S0001 TO S0011, SB101, SB111 TO SB113,
SB501 TO SB502, SB601, SF101, SF111 TO
SF113, SF301 TO SF303, SF501 TO SF503,
SF601 (DATED-10/10/2024)

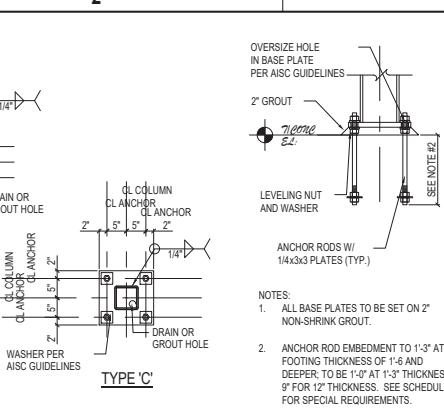

A2 ROOF FRAMIN - AREA C

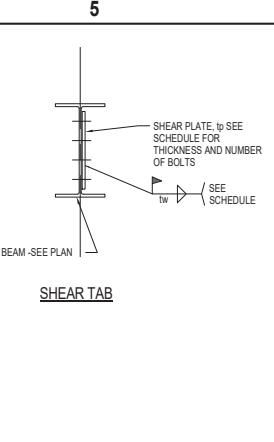

1/8" = 1'-0"

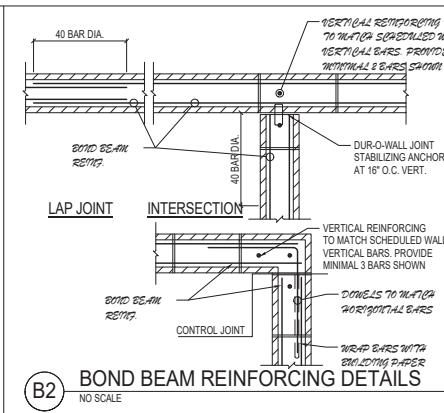

0 5 10 20

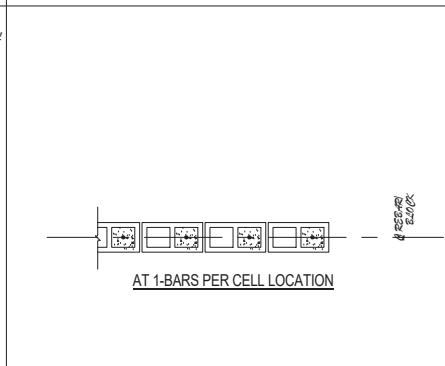


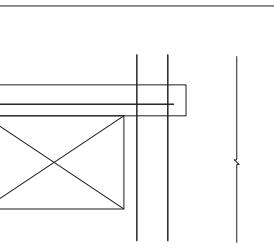
1 2 3 4 5



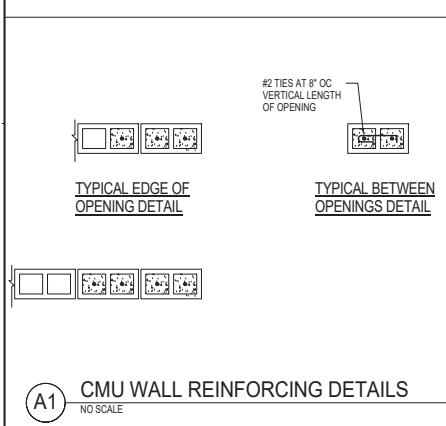




C1 COLUMN BASE PLATE DETAILS
NO SCALE

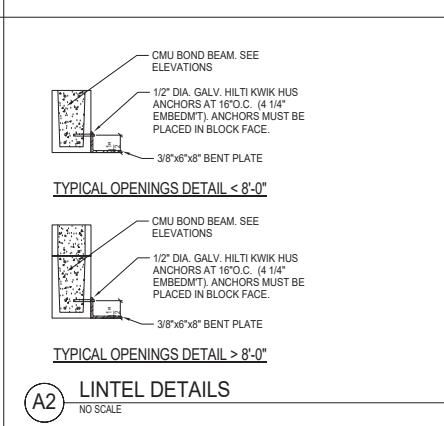

SHEAR PLATE SCHEDULE					
SECTION	SHEAR PLATE tp(thick)xL(length)	WELD PLATE THICKNESS(MIN)	WELD SIZE tw	NO. OF BOLTS	
W8x,C8,W10,C10	1/4" x 6"	1/2"	3/16"	2 - 3/4" DIA. A325-N	
W12x,C12,W14	1/4" x 9"	1/2"	3/16"	3 - 3/4" DIA. A325-N	
W16x, C15	5/16" x 12"	5/8"	1/4"	4 - 3/4" DIA. A325-N	
W18x	3/8" x 15"	5/8"	5/16"	5 - 3/4" DIA. A325-N	
W21x	3/8" x 18"	3/4"	5/16"	6 - 3/4" DIA. A325-N	


B1 CMU CONTROL JOINT DETAIL (MCJ)
NO SCALE

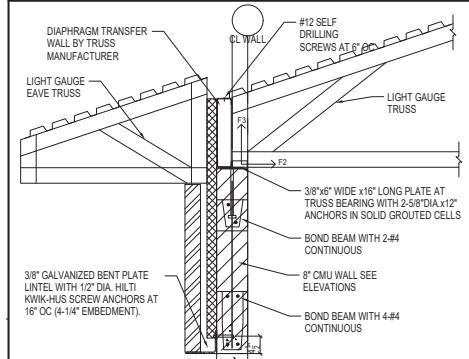
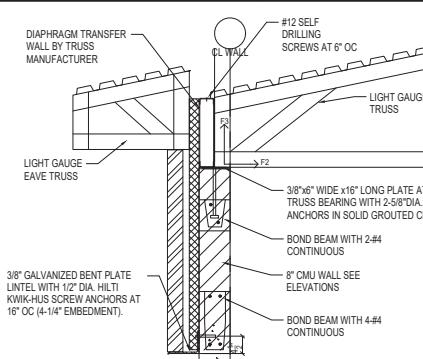
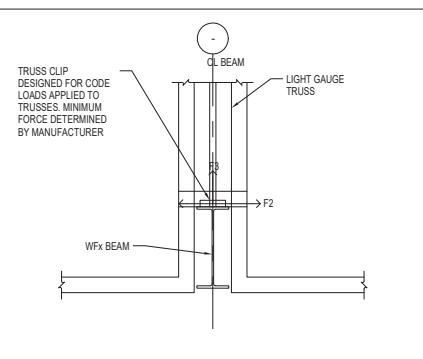
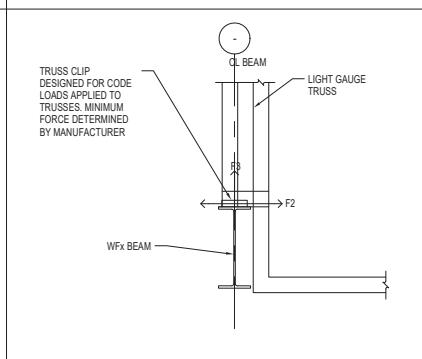
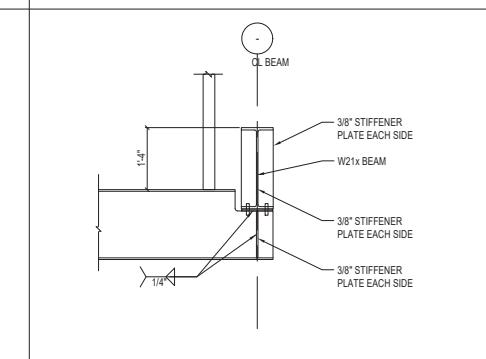
C3 SHEAR PLATE SCHEDULE
NO SCALE

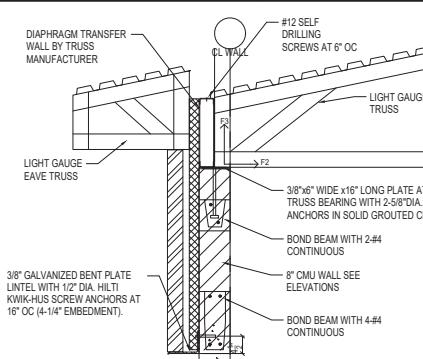
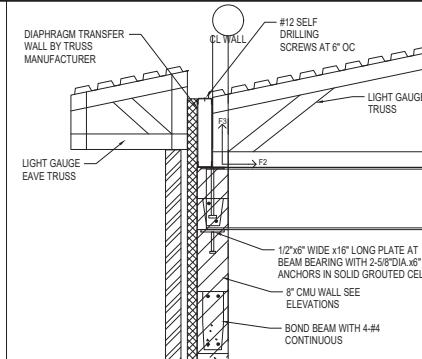


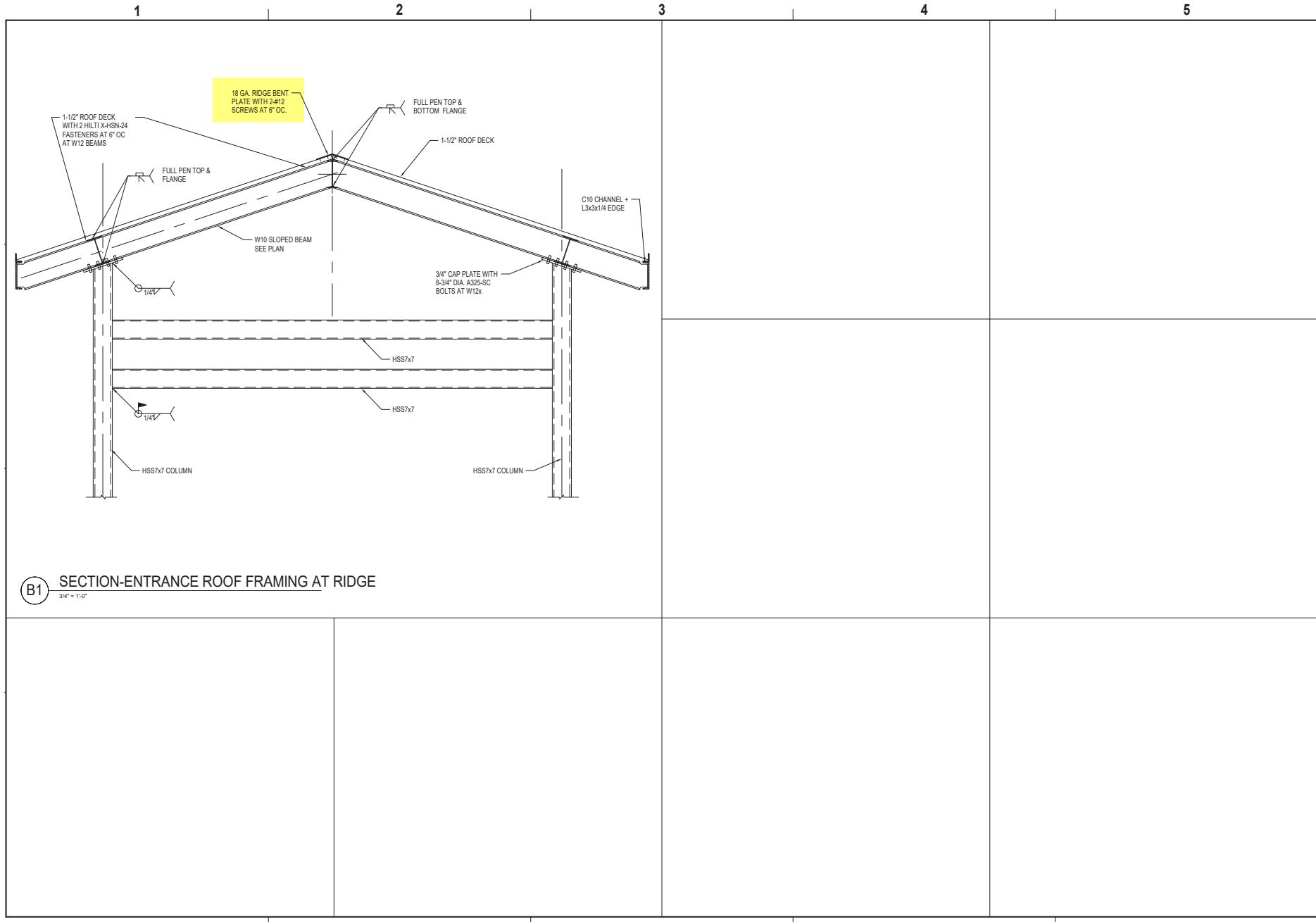
B3 CMU WALL REINFORCING LOCATION
NO SCALE



NOTES:



1. SEE SAE/TS 57301, 57302, 57303 FOR VERTICAL AND HORIZONTAL
RECOMMENDATIONS IN LOAD-BEARING CRANE
2. WHILE
PROVIDE VENEER SUPPORT SHELL ANGLE SEE DETAIL
C & C57302



A1 CMU WALL REINFORCING DETAILS
NO SCALE

A2 LINTEL DETAILS

1	2	3	4	5
<p>A1 HANGING PARTITION SUPPORT 3/4" = 1'-0"</p> <p>W16 BEAM & PARTITION TRACK SUPPORT. COORDINATE WITH PARTITION SHOP DRAWINGS FOR PUNCHED HOLES IN BEAM TO SUPPORT TRACK HANGERS.</p> <p>NOTE: SEE ARCHITECTURAL DETAILS FOR ADDITIONAL INFORMATION.</p>	<p>B1 SECTION - TRUSS AT INTERIOR BEAM 3/4" = 1'-0"</p> <p>TRUSS CLIP DESIGNED FOR CODE LOADS APPLIED TO TRUSSSES. MINIMUM FORCE DETERMINED BY MANUFACTURER</p>	<p>B2 SECTION - TRUSS AT INTERIOR BEAM 3/4" = 1'-0"</p> <p>TRUSS CLIP DESIGNED FOR CODE LOADS APPLIED TO TRUSSSES. MINIMUM FORCE DETERMINED BY MANUFACTURER</p>	<p>B3 SECTION - TRUSS AT INTERIOR BEAM 3/4" = 1'-0"</p> <p>TRUSS CLIP DESIGNED FOR CODE LOADS APPLIED TO TRUSSSES. MINIMUM FORCE DETERMINED BY MANUFACTURER</p>	<p>B5 SECTION AT ROOF BEAMS 3/4" = 1'-0"</p> <p>3/8" STIFFENER PLATE EACH SIDE W21x BEAM 3/8" STIFFENER PLATE EACH SIDE 3/8" STIFFENER PLATE EACH SIDE</p>
<p>C1 SECTION AT EXTERIOR WALL 3/4" = 1'-0"</p> <p>DIAPHRAGM TRANSFER WALL BY TRUSS MANUFACTURER LIGHT GAUGE EAVE TRUSS CL WALL #12 SELF DRILLING SCREWS AT 6" OC LIGHT GAUGE TRUSS 3/8" GALVANIZED BENT PLATE LINTEL WITH 1/2" DIA. HILTI KWIK-HUS SCREW ANCHORS AT 16" OC (4-1/4" EMBEDMENT). 8" CMU WALL SEE ELEVATIONS BOND BEAM WITH 2#4 CONTINUOUS 3/8" GALVANIZED BENT PLATE LINTEL WITH 1/2" DIA. HILTI KWIK-HUS SCREW ANCHORS AT 16" OC (4-1/4" EMBEDMENT). 8" CMU WALL SEE ELEVATIONS BOND BEAM WITH 2#4 CONTINUOUS 3/8" GALVANIZED BENT PLATE LINTEL WITH 1/2" DIA. HILTI KWIK-HUS SCREW ANCHORS AT 16" OC (4-1/4" EMBEDMENT). 8" CMU WALL SEE ELEVATIONS BOND BEAM WITH 4#4 CONTINUOUS</p>	<p>C2 SECTION AT EXTERIOR WALL 3/4" = 1'-0"</p> <p>DIAPHRAGM TRANSFER WALL BY TRUSS MANUFACTURER LIGHT GAUGE EAVE TRUSS CL WALL #12 SELF DRILLING SCREWS AT 6" OC LIGHT GAUGE TRUSS 3/8" GALVANIZED BENT PLATE LINTEL WITH 1/2" DIA. HILTI KWIK-HUS SCREW ANCHORS AT 16" OC (4-1/4" EMBEDMENT). 8" CMU WALL SEE ELEVATIONS BOND BEAM WITH 2#4 CONTINUOUS 3/8" GALVANIZED BENT PLATE LINTEL WITH 1/2" DIA. HILTI KWIK-HUS SCREW ANCHORS AT 16" OC (4-1/4" EMBEDMENT). 8" CMU WALL SEE ELEVATIONS BOND BEAM WITH 2#4 CONTINUOUS 3/8" GALVANIZED BENT PLATE LINTEL WITH 1/2" DIA. HILTI KWIK-HUS SCREW ANCHORS AT 16" OC (4-1/4" EMBEDMENT). 8" CMU WALL SEE ELEVATIONS BOND BEAM WITH 4#4 CONTINUOUS</p>	<p>C3 SECTION AT EXTERIOR WALL 3/4" = 1'-0"</p> <p>DIAPHRAGM TRANSFER WALL BY TRUSS MANUFACTURER LIGHT GAUGE EAVE TRUSS CL WALL #12 SELF DRILLING SCREWS AT 6" OC LIGHT GAUGE TRUSS 1/2" GALVANIZED BENT PLATE x16" LONG PLATE AT BEAM BEARING WITH 2-5/8" DIA.x12" ANCHORS IN SOLID GROUTED CELLS 8" CMU WALL SEE ELEVATIONS BOND BEAM WITH 4#4 CONTINUOUS</p>		

1

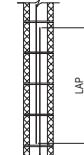
2

3

4

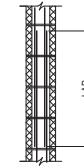
5

STEEL COLUMN SCHEDULE


MARK	SC-1a, SC-1b	SC-2a, SC-2b	SC-3	SC-4	
LOCATION					
MAIN ROOF EL: SEE PLAN					
LEVEL 01 EL: 0'-0"	HSS55x14	HSS55x38	HSS55x12	HSS77x14 (GALVANIZED)	
BASE PLATE/	TYPE 'A' 12"x12"x3/4" TYPE 'B' 10"x12"x3/4"	TYPE 'A' 12"x12"x1" TYPE 'B' 10"x12"x1"	TYPE 'A' 12"x12"x1"	TYPE 'C' 14"x14"x1" (GALVANIZED)	
ANCHOR RODS	4 - 1" DIA.	4 - 1" DIA.	4 - 1" DIA.	4 - 1" DIA. (GALVANIZED)	

NOTES:

1. SEE C1/SF501 FOR BASE PLATE TYPES.


LAP SPLICING LENGTHS FOR CMU WALL SINGLE REINFORCEMENT
(GRADE 60 UNCOATED BARS IN FULLY GROUTED CELLS)

BAR SIZE	LAP LENGTH
#3	1' - 6"
#4	2' - 0"
#5	2' - 6"
#6	3' - 6"
#7	4' - 4"
#8	5' - 0"
#9	-

LAP SPLICING LENGTHS FOR CMU WALL DOUBLE REINFORCEMENT
(GRADE 60 UNCOATED BARS IN FULLY GROUTED CELLS)

BAR SIZE	LAP LENGTH
#3	1' - 6"
#4	2' - 0"
#5	3' - 0"
#6	4' - 6"
#7	5' - 4"
#8	-
#9	-

MASONRY WALL NOTES:

1. PROVIDE CONTINUOUS REINFORCING BARS IN MASONRY WALL AND LAP BARS AS REQUIRED.
2. SEE GENERAL NOTES FOR ADDITIONAL INFORMATION.
3. EXTEND VERTICAL BARS THROUGH BOND BEAMS/ LINTELS.
4. BOND BEAMS HAVE A MINIMUM BEARING LENGTH OF 16".
5. SEE SHEET SF502 FOR DETAILS.
6. ALL JAMBS TO EXTEND FULL HEIGHT TO THE UNDERSIDE OF ROOF.
7. PIER AT WALL END OCCURS AT MASONRY CONTROL JOINTS.
8. **HORIZONTAL REINFORCEMENT:** PROVIDE HORIZONTAL REINFORCEMENT IN THE MASONRY WALLS SCHEDULED ABOVE PER MASONRY GENERAL NOTE #9 ON SHEET S0002 WITH MAXIMUM SPACING OF 8" O.C.

1

2

3

4

5